
Adding a type system to an untyped language
A journey to a type save environment for developers

Christoph Bühler
OST Eastern Switzerland University of Applied Sciences

MSE Seminar “Programming Languages”
Supervisor: Farhad Mehta

Semester: Fall 2020

Abstract
Type systems play a fundamental role in modern program-
ming languages. They provide assistance and error handling
to the developer before the code hits a productive system. They
help reduce the errors that can occur when two elements of
different types interact with each other. This paper focuses on
how one can create and add such a type system to an untyped
language and create a simple typed language with some useful
extensions.

Keywords: Lambda-Calculus, type systems, simple types

1 Introduction

The road from untyped to typed universes has
been followed many times, in many different
fields, and largely for the same reasons.

Luca Cardelli and Peter Wegner (1985)

All modern programming languages have type systems.
They are either of a more dynamic nature - like JavaScript -
or statically typed like C#. Functional languages like Haskell
have an even stricter form of a type system. They all have one
thing in common: They aid the developer to create programs
without the constant fear of runtime errors.

This paper shall give the reader an idea of the steps that
are needed to create a type system and how it is applied
to an untyped language. This paper will use JavaScript -
ish, TypeScript1 - ish and Haskell2 syntax as examples for
certain comparisons. Of course, JavaScript is not an untyped
language, but it does not have a strict static type analysis
which can lead to runtime errors during the interpretation
and execution of the code. TypeScript is a superset of the
JavaScript language which fills this gap and adds a static
type analyzer as well as a type of compiler (i.e., transpiler)
to the language.
The result of the paper will be a simply typed program-

ming language with simple extensions. The language will
contain a simple type system that can statically analyse its
language. Along the sections, the different rules and expla-
nations for them are provided. The paper does not include
1https://www.typescriptlang.org/
2https://www.haskell.org/

any variants of subtyping like polymorphism. The remainder
of this paper will give further introduction into the topic,
a brief overview over the 𝜆-Calculus, an overview over the
topic of “types” in general, and the application of simple
types to the untyped 𝜆-Calculus to create the simply-typed
𝜆-Calculus as well as a list of simple extensions to the simply-
typed 𝜆-Calculus which make the language more practical
and useful.

Why type systems are helpful and how they work is not a
trivial question to be answered. Consider the following code
statement:

foo = "Hello World"
bar = 42
foo - bar // NaN (Not a Number)

As software developers, we understand that this statement
is not going to create the desired output - assuming we have
an untyped language. Strings and numbers are not of the
same type and cannot be subtracted from one another. To
determine that this is not going to work, the computer needs
to execute the statements one by one and will encounter
a wrong state. A type system can prevent such errors and
create a human-readable message when compiling such a
program.
The reader should have an understanding of program-

ming languages and a brief understanding of the untyped 𝜆-
Calculus which is described in the first chapter of “Types and
Programming Languages” by Benjamin C. Pierce [Pie02].

2 Lambda-Calculus (𝜆-Calculus)
A computer program can be described in various ways. One
very famous variant is the “turing machine” which was de-
fined in a journal [Tur37] by A. M. Turing in the year 1937.
The Turing machine is fed with instructions and contains a
“memory” band to write down results for further computa-
tion.

Another famous - but more abstract - method to describe a
computation is the 𝜆-Calculus. This system was specified by
Alonzo Church [Chu41]. It is a mathematical model of com-
putation that only contains three rules of operation [Pie02].
Those three operations can be viewed in the following “gram-
mar”:

2020-11-24 16:31. Page 1 of 1–13.

https://www.typescriptlang.org/
https://www.haskell.org/

Christoph Bühler

t F terms :
| x variable
| 𝜆x.t abstraction
| t t application

For the further progress of this paper, it is necessary to
recall the grammar for arithmetic expressions of the untyped
calculus [Pie02]:

2.1 Terms
t F terms :

| true constant true
| false constant false
| if t then t else t conditional
| 0 constant zero
| succ t successor
| pred t predecessor
| iszero t zero test

2.2 Values
v F values :

| true true value
| false false value
| nv numeric value

2.3 Numeric Values
nv F numeric values :

| 0 zero value
| succ nv successor value

The untyped 𝜆-Calculus is Turing complete, which means
it can compute any program. In such an untyped system two
special, but unwanted, states can be achieved:

• stuck: the program is stuck when no more rules can
be applied and therefore the program cannot run to
its end

• infinity: the program encounters a term that reduces
to a term with the exact same terms (e.g. general re-
cursion without termination) so that the program will
never reach a terminating state

In an untyped 𝜆 system, it is possible to search for the
successor of “true”, which requires the argument to be a
number and therefore results in a stuck state since no more
valid rules can be applied.

Since it is not desirable for computer programs to run to
infinity or be stuck at a point in time, there has to be a way to
split up computer programs into two categories: The “useful”
and “useless” ones. Any program that will run forever or that
will be stuck in an error state counts towards the “useless”
ones. Other programs that have valid inputs and outputs will
be counted towards “useful” programs.

3 Types and Simple Types

Well-typed programs cannot “go wrong.”

Robin Milner (1978)

To get one step closer towards the goal of having a simply
typed 𝜆-Calculus, we need to define what a type is.

3.1 Types
A type is a classification of a value or multiple values. We
typically use mathematical terms to describe a type and the
relation of values to their types. When we say “𝑥 : 𝑇 ”, we
mean that “x is of type T”, or in mathematical terms: “𝑥 ∈ 𝑇 ”
[Pie02]. This relation makes it possible to determine the type
of computation that correlates with x and can be statically
analyzed. For example:{

if 𝑥,𝑦 ∈ N
then 𝑓 (𝑥,𝑦) = 𝑥 + 𝑦 ∈ N

We can determine the resulting type of f without running
the function. Shown in typescript syntax this could mean:

const x: number = 1
const y: number = 2
const f = (x, y) => x + y
f(x, y) // result is also of type number

With such a possibility, we can rule out stuck or meaning-
less programs. However, how do we get there? We add the
typing relation to the grammar and define that terms and
variables must have a type:

t F terms :
| x : T variable
| 𝜆x : T.t abstraction
| . . .

To express types correctly, we also need new syntactic
forms:

T F types :
| Bool type of booleans
| Nat type of natural numbers

And in addition to the syntactic definition, we need typing
rules that define the types of the arithmetic expression on
top of the rules that are given by the untyped 𝜆-Calculus.

true : Bool
false : Bool

0 : Nat

𝑡1 : Bool 𝑡2 : T 𝑡3 : T
if 𝑡1 then 𝑡2 else 𝑡3 : T

𝑡1 : Nat
succ 𝑡1 : Nat

2020-11-24 16:31. Page 2 of 1–13.

Adding a type system to an untyped language

𝑡1 : Nat
pred 𝑡1 : Nat

𝑡1 : Nat
iszero 𝑡1 : Bool

This means we allocate true and false to the Bool type.
Then we assign 0 to the Nat type. The derivation rules state
that all succ (successors) and pred (predecessors) are of the
Nat type. The rules for the predecessor and successor define
that the result of the applied succ or pred function must be
of type Nat. The rule for the condition defines that the input
for the “if” must be a boolean value and the result is of type
T. Both branches of the condition must have the same type.

3.1.1 Type-Safety. The given typing rules give our typ-
ing system a pretty important property: safety (or sound-
ness) [Pie02]. In conjunction with the normalization property
[Pie02] [BN98], which eliminates the Turing completeness
in our system, we can guarantee that our programs that
compile successfully with this type system will not ever
go wrong. We can call such a program well-typed (i.e., it
compiles according to the given typing rules [Car96]).

This safety is defined by two theorems [Pie02]:

• Progress: Well-typed terms are not stuck. They can
take a step in the evaluation rules or are a value.

• Preservation: A well-typed term that takes a step in
the evaluation rules will yield a result that is also
well-typed.

3.2 Intermediate Result
With the given syntax, evaluation rules and type definitions,
we would have a type system that could successfully com-
pile the following lines of code (the syntax is inspired by
TypeScript for a clear reference to a computer program):

const tr: boolean = true
const x: number = 42

if (tr) {
x

} else {
x + 1

}

3.3 Simple Types
Alonzo Church defined the theory of simple types [Chu40].
In combination with the examples and statements of Ben-
jamin C. Pierce [Pie02], there exists a definition of a simple
type. Simple types are a first approach towards a typesafe
environment for developers. They contain “base types” (or
“value types”) like Bool and Nat (natural numbers) as well
as “function types”.

Function types are needed to grant the program the possi-
bility to perform computations. Up until now, we can allocate
variables to types and can perform an if condition.

3.3.1 Base Types. Base types represent unstructured val-
ues in a programming language [Pie02]. An incomplete list
of such base types we will encounter is:

• Numbers (Integers and Float)
• Booleans
• Strings (list of Characters)

Since base types are unspectacular and are used to calcu-
late other types, the literature often substitutes them with a
letter for all unknown base types [Pie02]. Often, constructs
like A or other letters are seen. In this paper, we will estab-
lish the following syntactic form from Benjamin C. Pierce
[Pie02]:

T F types :
| . . .
| A base type

3.3.2 FunctionTypes. From a theoretical perspective, this
language is quite interesting, but to be used as a program-
ming language, it lacks some needed features. For example,
we need the possibility to apply a function to some input
to generate some output. Otherwise, this programming lan-
guage will be quite boring. To add functions to our typing
syntax, we add the following line:

T F types :
| . . .
| T→T type of functions

A type environment (Γ) is introduced in the following
derivation rules. This environment (or sometimes called type
context) is a mathematical set with variables and their types
[Pie02]. When our type-checker starts, the starting environ-
ment equals “∅” (the empty set). With each evaluation step,
this set will grow and contain the specified values.

Now we have the typing syntax for functions, but we need
some additional typing rules to ensure the types of functions
can be calculated statically:

Γ, 𝑥 : T1 ⊢ 𝑡2 : T2
Γ ⊢ 𝜆𝑥 : T1.𝑡2 : T1 → T2 (Abstraction)

This typing rule for the general abstraction evaluation
rule of the 𝜆-Calculus adds a premise to our system that
translates to “if 𝑥 is of type 𝑇1 and is in our typing context Γ
and the term 𝑡2 is of type 𝑇2, then the abstraction 𝜆𝑥 : 𝑇1.𝑡2
has the type 𝑇1 → 𝑇2”.
Furthermore, an additional typing rule for variables and

applications are needed:

𝑥 : T ∈ Γ
Γ ⊢ 𝑥 : T (Variable)

The type that is assumed for x is in the set of Γ.
2020-11-24 16:31. Page 3 of 1–13.

Christoph Bühler

Γ ⊢ 𝑡1 : T11 → T12 Γ ⊢ 𝑡2 : T11
Γ ⊢ 𝑡1 𝑡2 : T12 (Application)

If 𝑡1 is a function that takes 𝑇11 and returns 𝑇12 and the
term 𝑡2 is a value of type𝑇12, then the result of the application
of 𝑡1 to 𝑡2 will be of type 𝑇12.

Translated into a programming language:
// number (Variable)
const x = 1337

// number => string (Abstraction)
const f = nr => nr.toString()

// number that becomes a string (Application)
const r = f(x)

4 𝜆-Calculus, Simple Types and Extensions
When we apply “simple types” to the purely untyped 𝜆-
Calculus, the result is the “pure simply typed 𝜆-Calculus”.
This could count as a programming language since we can
perform all the basic operations a computation needs. We
are also able to analyze the code and calculate the types
needed for functions and variables and therefore can cate-
gorize our programs into meaningful and meaningless ones.
To make the syntax more useful, however, we can extend
our simple types with “simple extensions” which do not in-
clude any form of polymorphism. Those extensions make
our language and the type checker more useful and able to
perform operations.
The following sections will explain such extensions and

how they are constructed. For the further reading, the rules of
the “pure simply typed 𝜆-Calculus” are stated again [Pie02].

4.0.1 Syntax.
t F terms :

| x variable
| 𝜆x : T . t abstraction
| t t application

v F values :
| 𝜆x : T . t abstraction value

T F types :
| T→T type of functions

Γ F contexts :
| ∅ empty context
| Γ, x : T term variable binding

4.0.2 Evaluation.
𝑡1 → 𝑡 ′1

𝑡1 𝑡2 → 𝑡 ′1 𝑡2 (Application 1)

If there exists an evaluation step from 𝑡1 to 𝑡 ′1, take this step
prior to the evaluation step of 𝑡2. Since there are no other
applicable rules, this forces the program to first evaluate all
terms of 𝑡1 until other rules become applicable.

𝑡2 → 𝑡 ′2
𝑣1 𝑡2 → 𝑣1 𝑡

′
2 (Application 2)

If there exists an evaluation step from 𝑡2 to 𝑡 ′2 and the left
side of the application is already a value, take this step. This
defines that when the left-hand side of the application is
reduced to a value, evaluate the right-hand side.

(𝜆𝑥 : 𝑇11 .𝑡12)𝑣2 → [𝑥 ↦→ 𝑣2]𝑡12 (Application Abstraction)

Replace the variable 𝑥 with the value 𝑣2 in the term 𝑡12. This
represents the effective computation or application of the
value to a term.

4.0.3 Typing.
𝑥 : T ∈ Γ
Γ ⊢ 𝑥 : T (Variable)

Γ ⊢ 𝑡1 : T11 → T12 Γ ⊢ 𝑡2 : T11
Γ ⊢ 𝑡1 𝑡2 : T12 (Application)

Γ, 𝑥 : T1 ⊢ 𝑡2 : T2
Γ ⊢ 𝜆𝑥 : T1.𝑡2 : T1 → T2 (Abstraction)

This in combination with base and function types will
be the cornerstone of the “simple extensions” which we
will see in the next sections. Those sections will introduce
new elements to the given categories (“syntax”, “evaluation”,
“typing”).

4.1 Unit Type
The unit type represents a useful type often found in func-
tional programming languages like Haskell or F#. It is used
to “throw away” a computation result and combine multiple
computations together [Pie02]. In Haskell, this can be used
in the main function to glue several functions together that
contain side effects. It can be viewed as the “void” type in
C# or Java [Pie02].

4.1.1 Addition to the syntax [Pie02].
t F terms :

| . . .
| unit constant unit

v F values :
| . . .
| unit constant unit

2020-11-24 16:31. Page 4 of 1–13.

Adding a type system to an untyped language

T F types :
| . . .
| Unit unit type

4.1.2 Addition to the typing rules [Pie02].

Γ ⊢ unit : Unit (Unit)

4.1.3 Added derived form [Pie02].

𝑡1; 𝑡2
def
= (𝜆𝑥 : Unit.𝑡2) 𝑡1 where 𝑥 ∉ 𝐹𝑉 (𝑡2)

The function is applied to the term 𝑡1 where the input variable
𝑥 is not part of the “free variables”3 (FV) of the term 𝑡2.

4.1.4 Addition to the evaluation rules [Pie02].

𝑡1 → 𝑡 ′1
𝑡1; 𝑡2 → 𝑡 ′1; 𝑡2 (Sequence)

If there is a sequence (noted by ‘;’) and there is a step from
𝑡1 to 𝑡 ′1, evaluate the term 𝑡1.

unit; 𝑡2 → 𝑡2 (Sequence Next)
If the left-hand side of a sequence is reduced to a unit value,
return the result of 𝑡2.

4.1.5 Addition to the typing rules [Pie02].

Γ ⊢ 𝑡1 : Unit Γ ⊢ 𝑡2 : T2
Γ ⊢ 𝑡1; 𝑡2 : T2 (Sequence)

If 𝑡1 is of type Unit and 𝑡2 has type T2, then the resulting
type of the sequence will be T2.

4.2 Ascription
A very handy tool for our simple programming language is
the usage of ascription. It is often used for “documentation”
purposes [Pie02]. It defines a way to substitute long type
names with shorter ones. An example for such a substitute
in the Haskell language would be: “type MyType = Double
-> Double -> [Char]” which defines the type MyType as
a function that takes a double and a double and returns an
array of characters.

4.2.1 Addition to the syntax [Pie02].
t F terms :

| . . .
| t as T ascription

3Free variables are not bound variables in the term.

4.2.2 Addition to the evaluation rules [Pie02].

𝑣1 as T → 𝑣1 (Ascribe Value)

The term 𝑣1 as T returns 𝑣1.

𝑡1 → 𝑡 ′1
𝑡1 as T → 𝑡 ′1 as T (Ascription Evaluation)

If there is a step from 𝑡1 to 𝑡 ′1, evaluate the step in the syntax.

4.2.3 Addition to the typing rules [Pie02].

Γ ⊢ 𝑡1 : T
Γ ⊢ 𝑡1 as T : T (Ascribe)

If 𝑡1 is assumed with the type T in the context, the term
𝑡1 as T will yield a type T.

4.3 Let Bindings
Let bindings are a useful tool to avoid repetition in complex
expressions. They are found in Haskell as well:

add x y =
let result = x + y
in

result

4.3.1 Addition to the syntax [Pie02].
t F terms :

| . . .
| let x = t in t let binding

4.3.2 Addition to the evaluation rules [Pie02].

let 𝑥 = 𝑣1 in 𝑡2 → [𝑥 ↦→ 𝑣1]𝑡2 (Let-Bind Value)

In the given abstraction 𝑡2, replace all occurencies of 𝑥 with
𝑣1.

𝑡1 → 𝑡 ′1
let 𝑥 = 𝑡1 in 𝑡2 → let 𝑥 = 𝑡 ′1 in 𝑡2 (Let)

If there is a step from 𝑡1 to 𝑡 ′1, evaluate the step in the syntax
before evaluating the let binding itself.

4.3.3 Addition to the typing rules [Pie02].

Γ ⊢ 𝑡1 : T1 Γ, 𝑥 : T1 ⊢ 𝑡2 : T2
Γ ⊢ let 𝑥 = 𝑡1 in 𝑡2 : T2 (Let)

To calculate the type of the let binding, calculate the type of
the bound term. The bound term will yield the same type as
the used term for the binding.

4.4 Pairs and Tuples
Until now, the additions were minor and added some syntac-
tic sugar to the language of the simple typed 𝜆-Calculus. The
following simple extensions will enrich the language with
features that are often found in programming languages.

2020-11-24 16:31. Page 5 of 1–13.

Christoph Bühler

Pairs - and their more general counterpart “Tuples” - are a
construct to group values and terms together. Pairs are prod-
uct types of exactly two values and therefore have slightly
different evaluation rules. Tuples are the general way of pairs
and therefore only the rules of tuples will be explained since
they include the rules of pairs as well.

4.4.1 Addition to the syntax [Pie02].
t F terms :

| . . .
| {𝑡𝑖∈1..𝑛

𝑖
} tuple

| t.i projection

{𝑡𝑖∈1..𝑛
𝑖

} means that, for example, with 𝑖 = 3 we have a tu-
ple of three elements. A tuple with 𝑖 = 2 would be a pair.
{𝑡𝑖∈1..𝑛
𝑖

} with 𝑖 = 3 ↦→ {𝑡1, 𝑡2, 𝑡3}. The projection is needed to
access the elements in a tuple at the given index.

v F values :
| . . .
| {𝑣𝑖∈1..𝑛

𝑖
} tuple value

T F types :
| . . .
| {𝑇 𝑖∈1..𝑛

𝑖
} tuple type

4.4.2 Addition to the evaluation rules [Pie02].

{𝑣𝑖∈1..𝑛𝑖 }. 𝑗 → 𝑣 𝑗 (Tuple projection)

When the projection with index 𝑗 is applied to a tuple with 𝑖
values, then return the value with index 𝑗 .

𝑡1 → 𝑡 ′1
𝑡1.𝑖 → 𝑡 ′1.𝑖 (Projection)

If there is a step from 𝑡1 to 𝑡 ′1, evaluate the step in the syntax
before executing the projection.

𝑡 𝑗 → 𝑡 ′𝑗

{𝑣𝑖∈1.. 𝑗−1
𝑖

, 𝑡 𝑗 , 𝑡
𝑘∈ 𝑗+1..𝑛
𝑘

} → {𝑣𝑖∈1.. 𝑗−1
𝑖

, 𝑡 ′𝑗 , 𝑡
𝑘∈ 𝑗+1..𝑛
𝑘

} (Tuple)

If there is a step from 𝑡 𝑗 to 𝑡 ′𝑗 , evaluate the leftmost term
𝑡 𝑗 to 𝑡 ′𝑗 that is not a value. This forces the tuple to be fully
evaluated before any projections can be executed on the
tuple. Moreover, it enforces the evaluation direction for the
tuple from left to write. In other terms: {𝑡1, 𝑡2} ↦→ {𝑣1, 𝑡2} ↦→
{𝑣1, 𝑣2}.

4.4.3 Addition to the typing rules [Pie02].
for each 𝑖 Γ ⊢ 𝑡𝑖 : T𝑖
Γ ⊢ {𝑡𝑖∈1..𝑛

𝑖
} : {T𝑖∈1..𝑛

𝑖
} (Tuple)

For each element in the tuple with index 𝑖 , we calculate the
type and add the whole tuple to the typing context Γ in the
form {𝑇1,𝑇2, . . . }.

Γ ⊢ 𝑡1 : {T𝑖∈1..𝑛𝑖
}

Γ ⊢ 𝑡𝑖 . 𝑗 : T𝑗 (Projection)
If the term 𝑡1 is of a tuple type with 𝑖 entries, the projection
𝑡1. 𝑗 will yield an element of type T𝑗 .

4.5 Records
Since tuples have indices and must be accessed that way, we
may want to name the elements in a tuple. “Records” provide
a way to label the entries of a tuple and create a possibility
to semantically group terms together. One could loosely
compare them with Structs from programming languages
like GoLang.

4.5.1 Addition to the syntax [Pie02].
t F terms :

| . . .
| {𝑙𝑖 = 𝑡𝑖∈1..𝑛

𝑖
} record

| t.l projection

This syntax rule follows the same principle as for the tuple.
One change to note is that the projection is not done via an
index but with a label 𝑙 .

v F values :
| . . .
| {𝑙𝑖 = 𝑣𝑖∈1..𝑛

𝑖
} record value

T F types :
| . . .
| {𝑙𝑖 : 𝑇 𝑖∈1..𝑛

𝑖
} tuple of records

4.5.2 Addition to the evaluation rules [Pie02].

{𝑙𝑖 = 𝑣𝑖∈1..𝑛𝑖 }.𝑙 𝑗 → 𝑣 𝑗 (Record projection)

When the projection with label 𝑗 is applied to a record with
𝑖 values, return the value with the label 𝑗 .

𝑡1 → 𝑡 ′1
𝑡1 .𝑙 → 𝑡 ′1 .𝑙 (Projection)

If there is a step from 𝑡1 to 𝑡 ′1, evaluate the step in the syntax
before executing the projection.

𝑡 𝑗 → 𝑡 ′𝑗

{𝑙𝑖 = 𝑣
𝑖∈1.. 𝑗−1
𝑖

, 𝑙 𝑗 = 𝑡 𝑗 , 𝑙𝑘 = 𝑡
𝑘∈ 𝑗+1..𝑛
𝑘

}

→ {𝑙𝑖 = 𝑣
𝑖∈1.. 𝑗−1
𝑖

, 𝑙 𝑗 = 𝑡 ′𝑗 , 𝑙𝑘 = 𝑡
𝑘∈ 𝑗+1..𝑛
𝑘

}
(Record)

If there is a step from 𝑡 𝑗 to 𝑡 ′𝑗 , evaluate the leftmost term
𝑙 𝑗 = 𝑡 𝑗 to 𝑙 𝑗 = 𝑡 ′𝑗 that is not a value. This enforces the same
evaluation rules on records as the above rules did on tuples.
In other terms: {foo = 𝑡1, bar = 𝑡2} ↦→ {foo = 𝑣1, bar =

𝑡2} ↦→ {foo = 𝑣1, bar = 𝑣2}.
2020-11-24 16:31. Page 6 of 1–13.

Adding a type system to an untyped language

4.5.3 Addition to the typing rules [Pie02].

for each 𝑖 Γ ⊢ 𝑡𝑖 : T𝑖
Γ ⊢ {𝑙𝑖 = 𝑡𝑖∈1..𝑛

𝑖
} : {𝑙𝑖 : T𝑖∈1..𝑛𝑖

} (Record)

For each element in the record with label 𝑙 , we calculate the
type and add the whole record to the typing context Γ in the
form {𝑙1 : 𝑇1, 𝑙2 : 𝑇2, . . . }.

Γ ⊢ 𝑡1 : {𝑙𝑖 : T𝑖∈1..𝑛𝑖
}

Γ ⊢ 𝑡𝑖 .𝑙 𝑗 : T𝑗 (Projection)

If the term 𝑡1 is a record type with 𝑖 entries, the projection
𝑡1.𝑙 𝑗 will yield an element of type T𝑗 at the position of label
𝑙 𝑗 .

4.6 Sums and Variants
Many programs need to tackle variants. This means that we
can sum together multiple shapes of a type into a summary
type. Such variants are algebraic data types and are often used
in functional languages for pattern matching. One can com-
pare them vaguely to Enums of object-oriented languages
like C#. This paper will use the generalized definition of the
variant to describe the principle. Thus, instead of a sum type
T + T, we use the labeled variant type ⟨𝑙1 : T1, 𝑙2 : T2⟩. The
sum type could be compared to Haskell’s “Either a b” type,
which can be either type “a” or “b”.

4.6.1 Addition to the syntax [Pie02].
t F terms :

| . . .
| <l=t> as T tagging
| case t of <𝑙𝑖 = 𝑥𝑖> ⇒ 𝑡𝑖∈1..𝑛

𝑖
case

This syntax allows generalized labeled variants of types.
T F types :

| . . .
| <𝑙𝑖 : 𝑇 𝑖∈1..𝑛

𝑖
> type of variants

4.6.2 Addition to the evaluation rules [Pie02].

case(<𝑙 𝑗 = 𝑣 𝑗> as T) of <𝑙𝑖 = 𝑥𝑖> ⇒ 𝑡𝑖∈1..𝑛𝑖

→ [𝑥 𝑗 ↦→ 𝑣 𝑗]𝑡 𝑗
(Case variant)

Check the variant with a case variant syntax and return
the given term to the right-hand side of the arrow. Replace
the x variable in the term with the ascribed type.

𝑡0 → 𝑡 ′0

case 𝑡0 of <𝑙𝑖 = 𝑥𝑖> ⇒ 𝑡𝑖∈1..𝑛𝑖

→ case 𝑡 ′0 of <𝑙𝑖 = 𝑥𝑖> ⇒ 𝑡𝑖∈1..𝑛𝑖

(Case)

If there is a step from 𝑡0 to 𝑡 ′0, evaluate the term in the case
clause before applying any mapping.

𝑡𝑖 → 𝑡 ′𝑖
<𝑙𝑖 = 𝑡𝑖> as T → <𝑙𝑖 = 𝑡 ′𝑖 > as T (Variant)

If there is a step from 𝑡𝑖 to 𝑡 ′𝑖 , evaluate the term in the variant.

4.6.3 Addition to the typing rules [Pie02].
Γ ⊢ 𝑡 𝑗 : T𝑗

Γ ⊢ <𝑙 𝑗 = 𝑡 𝑗> as <𝑙𝑖 : 𝑇 𝑖∈1..𝑛
𝑖

>: <𝑙𝑖 : 𝑇 𝑖∈1..𝑛
𝑖

> (Variant)

When the type of 𝑡 𝑗 is in the typing environment, add the
labeled variant types in the environment as well with their
corresponding labels and term types.

Γ ⊢ 𝑡0 : <𝑙𝑖 : T𝑖∈1..𝑛𝑖 >
for each 𝑖 Γ, 𝑥𝑖 : T𝑖 ⊢ 𝑡𝑖 : 𝑇

Γ ⊢ case 𝑡0 of <𝑙𝑖 = 𝑥𝑖> ⇒ 𝑡𝑖∈1..𝑛
𝑖

: T (Case)
If 𝑡0 is a variant with 𝑖 label (and therefore variants), the ‘case
of’ syntax will return the specific type of the variant instead
of the summary type.
With the variant types in place, our language could now

type-check and interpret the following lines of code (given
in the Haskell syntax for readability):

data StringOrInt = MyString String | MyInt Int
getStringValue :: StringOrInt -> String
getStringValue value = case value of

MyString s -> s
MyInt i -> show i

Variants are often used to represent variable return values.
One can think of the “Option” type in F# or the “Maybe”
type of Haskell. Both define two variants of a result, namely
“Some” (“Just”) or “None” (“Nothing”). A computation that
may have a none result can return this type constructor of
the variant and can signal an empty or faulty result. A typical
case could be number parsing. When one wants to parse the
string "12" into a number, the result in Haskell could be
"Just 12", but on the other hand, parsing "12i" would
result in "Nothing".

4.7 General Recursion
This section focuses on the general recursion. In the untyped
𝜆-Calculus, a general recursion can be solved by a fixed-
point combinator which “unrolls” the recursion of a function
[Pie02].

This fixed-point combinator is further called “fix”.
For the sake of completeness, the formal definition of

the fixed combinator is stated below [Pie02]: TODO: Ref
to simons paper (hopefully he has the general recursion
covered)

𝜆𝑓 . (𝜆𝑥 . 𝑓 (𝑥 𝑥)) (𝜆𝑥. 𝑓 (𝑥 𝑥)) (Y combinator)
The given function is called the “paradoxical Y combina-

tor by Haskell B. Curry”. It is an implementation of such a
fix combinator. The combinator returns a fixed point of a

2020-11-24 16:31. Page 7 of 1–13.

Christoph Bühler

function if any exists by applying the function to itself. To
give a better understanding of how this recursion works, the
following lines should show the progress of the reduction of
the fix combinator:

𝑌 𝑔 = (𝜆𝑓 . (𝜆𝑥. 𝑓 (𝑥 𝑥)) (𝜆𝑥 . 𝑓 (𝑥 𝑥))) 𝑔
= (𝜆𝑥 . 𝑔(𝑥 𝑥)) (𝜆𝑥 . 𝑔(𝑥 𝑥))
= 𝑔((𝜆𝑥. 𝑔(𝑥 𝑥)) (𝜆𝑥. 𝑔(𝑥 𝑥)))
= 𝑔(𝑌 𝑔)

The Y combinator is “solved” by 𝛽-reduction and equal-
ity rules. When the equality is applied multiple times the
following equation emerges:

𝑌 𝑔 = 𝑔(𝑌 𝑔) = 𝑔(𝑔(𝑌 𝑔)) = . . .

Given the terms of the language we constructed so far, the
fix combinator could be defined as: TODO: get citation for
this

fix 𝑓 = let 𝑥 = 𝑓 𝑥 in 𝑥

To understand the impact of the fix combinator in the
typed universe, let us analyze the factorial equation:

𝑓 (𝑥) =
{
1 for 𝑥 ∈ {0, 1}
𝑥 ∗ 𝑓 (𝑥 − 1) for 𝑥 ∈ N \ {0, 1}

(Recursive Factorial)
This definition translated into an untyped 𝜆-Calculus syn-

tax would be [Pie02]:
1 factorial = 𝜆n.

2 if n = 0 then 1

3 else n * factorial(pred(n))

With this definition at hand, the fix operator can now un-
roll the recursion and create a function that does those “if”
comparisons until the termination point is reached. In gen-
eral, the “fix” operator takes a recursive function (generator)
and creates a fixed point function that unrolls the function
call to itself until the end is reached. The resulting function
states as follows [Pie02]:

1 if n=0 then 1

2 else n * (if (n-1)=0 then 1

3 else (n-1) * (if (n-2)=0 then 1

4 else ...))

The given fix function has a big problem in our narrowed
down universe of “simple types”. Since the function is able
to create an endless recursion, it is not valid in our context.
All functions must eventually terminate to adhere to the
given rules of a typed system. The only applicable solution
for now4 is to define fix as a primitive in the language and
use typing rules to mimic the behavior [Pie02].

4As long as we only have “simple types”.

4.7.1 Addition to the syntax [Pie02].
t F terms :

| . . .
| fix t fixed point of t

4.7.2 Addition to the evaluation rules [Pie02].

fix (𝜆𝑥 : T1.𝑡2) → [𝑥 ↦→ (fix (𝜆𝑥 : T1 .𝑡2))]𝑡2
(Fix Beta Reduction)

When applying the fix function to a given term 𝑡2, replace
all occurrences of the bound variable (𝑥) with the term itself.

𝑡1 → 𝑡 ′1
fix 𝑡1 → fix 𝑡 ′1 (Fix)

If there is a step from 𝑡1 to 𝑡 ′1, evaluate the term before ap-
plying the fix function to it.

4.7.3 Addition to the typing rules [Pie02].

Γ ⊢ 𝑡1 : T1 → T1
Γ ⊢ fix 𝑡1 : T1 (Variant)

If the type of 𝑡1 is in the context and has a function type
T → T, then the application of fix to 𝑡1 will yield the type
T1.

4.7.4 Added derived form [Pie02].

letrec 𝑥 : T1 = 𝑡1 in 𝑡2

def
= let 𝑥 = fix (𝜆𝑥 : T1 .𝑡1) in 𝑡2

Define the form letrec . . . as a “let binding” with the appli-
cation of the fix function to the term in 𝑡2.

4.8 Lists
We have seen some “base types” like Nat or Bool and “type
constructors” records and variant types which build new
types out of old ones [Pie02]. To complete the list - pun
intended - we introduce “lists” here. A list is a practical and
useful type constructor that describes a finite set of elements
which are fetched from the type of the list. In addition to the
list definition itself, some useful helper methods come along
with it to make the list usable in a “practical” way.

4.8.1 Addition to the syntax [Pie02].
t F terms :

| . . .
| nil[T] empty list
| cons[T] t t list constructor
| isnil[T] t test for empty list
| head[T] t head of a list
| tail[T] t tail of a list

2020-11-24 16:31. Page 8 of 1–13.

Adding a type system to an untyped language

v F values :
| . . .
| nil[T] empty list
| cons[T] v v list constructor

T F types :
| . . .
| List T type of lists

4.8.2 Addition to the evaluation rules [Pie02].
𝑡1 → 𝑡 ′1

cons[T] 𝑡1 𝑡2 → cons[T] 𝑡 ′1 𝑡2 (Cons Left)

If there is a step from 𝑡1 to 𝑡 ′1, evaluate the term 𝑡1 before the
other terms or the constructor.

𝑡2 → 𝑡 ′2
cons[T] 𝑣1 𝑡2 → cons[T] 𝑣1 𝑡

′
2 (Cons Right)

If there is a step from 𝑡2 to 𝑡 ′2 and the left-hand side is al-
ready reduced to a value, evaluate the term 𝑡2 before the list
constructor.

isnil[S] (nil[T]) → true (IsNil of Nil)
The application of isnil to an empty list constructed with
nil[] must return true. TODO: why S in isnil? and not T?

isnil[S] (cons[T]𝑣1𝑣2) → false (IsNil of Nil)

The application of isnil to a nonempty list constructed
with cons[] and two values must return false.

𝑡1 → 𝑡 ′1
isnil[T] 𝑡1 → isnil[T] 𝑡 ′1 (IsNil)

If there is a step from 𝑡1 to 𝑡 ′1, evaluate the term 𝑡 first until
it is a value before evaluating the isnil function.

head[S] (cons[T] 𝑣1𝑣2) → 𝑣1 (Head of cons)

If the function head is applied to a list of values, it returns
the left-hand element (head) of the list.

𝑡1 → 𝑡 ′1
head[T] 𝑡1 → head[T] 𝑡 ′1 (Head)

If there is a step from 𝑡1 to 𝑡 ′1, evaluate 𝑡 prior to applying
the head function to the term.

tail[S] (cons[T] 𝑣1𝑣2) → 𝑣2 (Tail of cons)

If the function tail is applied to a list of values, it returns
the right-hand element (tail) of the list.

𝑡1 → 𝑡 ′1
tail[T] 𝑡1 → tail[T] 𝑡 ′1 (Tail)

If there is a step from 𝑡1 to 𝑡 ′1, evaluate 𝑡 prior to applying
the tail function to the term.

4.8.3 Addition to the typing rules [Pie02].

Γ ⊢ nil[T1] : List T1 (Nil)

The calculated type of the list nil[T] is List T.

Γ ⊢ 𝑡1 : T1 Γ ⊢ 𝑡2 : List T1
Γ ⊢ cons[T1] 𝑡1 𝑡2 : List T1 (Constructor)

If 𝑡1 is of type T1 and 𝑡2 is a list of T1, then the cons(tructor)
of a list with those two terms will also create a list of type T1.
This essentially allows the list constructor to create consecu-
tive lists of terms. Lists are not only limited to two elements.
This can be compared to the Haskell notation of the ‘:’ (cons)
operator, which allows the creation of lists:

-- this creates the list [1,2,3]
list = 1:2:3:[]

Γ ⊢ 𝑡1 : List T11
Γ ⊢ isnil[T11] 𝑡1 : Bool (IsNil)

If the term 𝑡1 is a List T, then the application of isnil[T]
to this term 𝑡1 must yield a Bool type.

Γ ⊢ 𝑡1 : List T11
Γ ⊢ head[T11] 𝑡1 : T11 (Head)

If the term 𝑡1 is a List T, then the application of head[T]
to this term 𝑡1 must yield a type T.

Γ ⊢ 𝑡1 : List T11
Γ ⊢ tail[T11] 𝑡1 : T11 (Tail)

If the term 𝑡1 is a List T, then the application of tail[T]
to this term 𝑡1 must yield a type T.

4.9 References
Up until now, all previous extensions to the “simply typed 𝜆-
Calculus” were of pure nature [Pie02]. When we consider im-
perative and object-oriented programming languages, most
of them contain some mechanism to assign values to a vari-
able. This can (and is) used to perform side effects in the
execution of a function. Those side effects are often referred
to as “computational effects” [Pie02]. Let the following lines
of code inspire the idea behind the side effects.

let counter = 0;

function update(): number {
return counter++;

}

console.log(counter());
console.log(counter());
console.log(counter());

2020-11-24 16:31. Page 9 of 1–13.

Christoph Bühler

One of the substantial differences between pure functional
programming languages and object-oriented ones is the “ref-
erential transparency” which essentially states that given an
input 𝑥 , the function 𝑓 (𝑥) must yield the same result each
time it is called with 𝑥 . In essence, one could replace the
function with its result and does not change the result of
the program. References are a way to introduce such desired
side effects to programming languages like seen in the code
lines above.

Note thatmost of the time the “=” sign is used for assigning
values. It should be stated that instead of “equals” it should
be regarded as “becomes”. Because it is not a mathematical
equality but more an assignment to a label.

The program needs to keep track of those references and
the stored values. For this, we introduce stores with locations.
As one can imagine, the store contains the real value which
is encoded in the binary format of the type. The set of store
locations is named L and the store itself is a partial function
from locations 𝑙 to their values [Pie02]. Anothermetavariable
𝜇 is used to range over stores. A reference is essentially
a location in a store. To type the stores correctly, another
type context is added to the language with the symbol Σ. It
contains the types of locations in the store.
Some of the basic application and abstraction rules that

were stated in the previous sections need to be adjusted to
take stores into account.

The basic operations of references are [Pie02]:

• Assignment
• Allocation
• Dereferencing

4.9.1 Addition to the existing evaluation rules [Pie02].

𝑡1 | 𝜇 → 𝑡 ′1 | 𝜇 ′

𝑡1 𝑡2 | 𝜇 → 𝑡 ′1 𝑡2 | 𝜇 ′ (Application 1)

𝑡2 | 𝜇 → 𝑡 ′2 | 𝜇 ′

𝑣1 𝑡2 | 𝜇 → 𝑣1 𝑡
′
2 | 𝜇 ′ (Application 2)

(𝜆𝑥 : 𝑇11.𝑡12) 𝑣2 | 𝜇 → [𝑥 ↦→ 𝑣2]𝑡12 | 𝜇
(Application Abstraction)

The given changes define that the application step con-
tains a starting and ending point for the stores 𝜇. The ab-
straction, however, does not change the store and therefore
𝜇 does not transition to 𝜇 ′. The additions extend the applica-
tions so that they must take a store and return a new store
at the end of the evaluation.

4.9.2 Addition to the existing typing rules [Pie02].

Γ | Σ ⊢ unit : Unit (Nil)

𝑥 : T ∈ Γ

Γ | Σ ⊢ 𝑥 : T (Variable)

Γ | Σ ⊢ 𝑡1 : T11 → T12 Γ | Σ ⊢ 𝑡2 : T11

Γ | Σ ⊢ 𝑡1 𝑡2 : T12 (Application)

Γ, 𝑥 : T1 | Σ ⊢ 𝑡2 : T2

Γ | Σ ⊢ 𝜆𝑥 : T1 .𝑡2 : T1 → T2 (Abstraction)

Now all existing rules are aware of typings that are not in
the typing context Γ but also look in type environment of
“Σ” for a given type.

4.9.3 Addition to the syntax [Pie02].
t F terms :

| . . .
| ref t reference creation
| !t dereference
| t : = t assignment
| l store location

T F values :
| . . .
| l store location

T F types :
| . . .
| Ref T type of references

𝜇 F stores :
| ∅ empty store
| 𝜇, l = v location binding

Σ F store typings :
| ∅ empty store typing
| Σ, l : T location typing

4.9.4 Addition to the evaluation rules [Pie02].

𝑙 ∉ 𝑑𝑜𝑚(𝜇)
ref 𝑣1 | 𝜇 → 𝑙 | (𝜇, 𝑙 ↦→ 𝑣1) (Ref Value)

If 𝑙 is not in the domain of 𝜇, the ref syntax of a value creates
a new location in the store with a function to retrieve the
value from the store with the given location.

𝑡1 | 𝜇 → 𝑡 ′1 | 𝜇 ′

ref 𝑡1 | 𝜇 → ref 𝑡 ′1 | 𝜇 ′ (Reference)
2020-11-24 16:31. Page 10 of 1–13.

Adding a type system to an untyped language

If there is a step from 𝑡1 to 𝑡 ′1 and therefore a step from
store 𝜇 to 𝜇 ′, evaluate those terms before performing the ref
function.

𝜇 (𝑙) = 𝑣

!𝑙 | 𝜇 → 𝑣 | 𝜇 (Dereference location)
If the location 𝑙 is in the store 𝜇 and it yields the value 𝑣 , the
application of !𝑙 to the store will yield the value 𝑣 and the
same store since it is not manipulated.

𝑡1 | 𝜇 → 𝑡 ′1 | 𝜇 ′

!𝑡1 | 𝜇 →!𝑡 ′1 | 𝜇 ′ (Dereference)
If there is a step from 𝑡1 to 𝑡 ′1 and therefore a step from
the store 𝜇 to 𝜇 ′, evaluate the term before performing the
de-referentation of the location.

𝑙 := 𝑣2 | 𝜇 → unit | [𝑙 ↦→ 𝑣2] 𝜇 (Assignment)

The assignment of 𝑙 ‘becomes’ 𝑣2 will return a unit value
and replaces 𝑙 in the store 𝜇 with the value 𝑣2.

𝑡1 | 𝜇 → 𝑡 ′1 | 𝜇 ′

𝑡1 := 𝑡2 | 𝜇 → 𝑡 ′1 := 𝑡2 | 𝜇 ′ (Assignment 1)
If there is a step from 𝑡1 to 𝑡 ′1 and therefore a step from the
store 𝜇 to 𝜇 ′, evaluate the term 𝑡1 before performing the
assignment.

𝑡2 | 𝜇 → 𝑡 ′2 | 𝜇 ′

𝑣1 := 𝑡2 | 𝜇 → 𝑣1 := 𝑡 ′2 | 𝜇 ′ (Assignment 2)
If there is a step from 𝑡2 to 𝑡 ′2 and the location is already a
value 𝑣1, evaluate the term 𝑡2 before performing the assign-
ment.

4.9.5 Addition to the typing rules [Pie02].

Σ(𝑙) = T1
Γ | Σ ⊢ 𝑙 : Ref T1 (Location)

If the stored typing of 𝑙 in the stored typing Σ has the type
T1, then 𝑙 has the type Ref T1.

Γ | Σ ⊢ 𝑡1 : T1
Γ | Σ ⊢ ref 𝑡1 : Ref T1 (Reference)

If the stored typing of 𝑡1 is T1, then the resulting type of
ref 𝑡1 is Ref T1.

Γ | Σ ⊢ 𝑡1 : Ref T11
Γ | Σ ⊢!𝑡1 : T11 (De-Reference)

If the stored typing of 𝑡1 is a reference type Ref T11, the
‘deref’ !t operation will yield a type T11.

Γ | Σ ⊢ 𝑡1 : Ref T11 Γ | Σ ⊢ 𝑡2 : T11
Γ | Σ ⊢ 𝑡1 := 𝑡2 : Unit (Assignment)

If 𝑡1 is a reference type of type 𝑇11 and 𝑡2 is a term with
type𝑇11, then the assignment 𝑡1 := 𝑡2 will yield a Unit type
result.

4.10 Exceptions
The final addition (i.e., simple extension) to the simply typed
𝜆-Calculus in this paper are exceptions. With the possibility
of references and general recursive functions, the need of
error handling arises. Nearly all real-world programming
languages have some way of signaling that the function in
question is not able to carry out a given task [Pie02]. In
practical terms, this could be a division by zero. As seen in
4.6, a function could just return a variant that is either a
result or some other variant of the type, but when something
is truly exceptional, the language should be able to throw an
exception.

The following additions define the possibility to raise ex-
ceptions, as well as a way of handling them when they occur.

4.10.1 Addition to the syntax [Pie02].
t F terms :

| . . .
| raise t raise an exception
| try t with t handle exceptions

4.10.2 Addition to the evaluation rules [Pie02].

(raise 𝑣11)𝑡2 → raise 𝑣11 (Application Raise 1)

If the left-hand side of an application does raise some error
value, ignore the right-hand side and raise the given error.

𝑣1 (raise 𝑣21) → raise 𝑣21 (Application Raise 2)

If the left-hand side is reduced to a value and the right-hand
side does raise an error, raise that error. Those two rules
guarantee that if either side of an application does raise an
exception, the error will take precedence over the other term
and/or value.

𝑡1 → 𝑡 ′1
raise 𝑡1 → raise 𝑡 ′1 (Raise)

If there is a step from 𝑡1 to 𝑡 ′1, evaluate the term before exe-
cuting the raise application.

raise (raise 𝑣11) → raise 𝑣11 (Re-Raise)
If raise is applied to a term that raises a value itself, re-raise
that value.

try 𝑣1 with 𝑡2 → 𝑣1 (Try Value)
If a term is evaluated to a value and no error is risen, return
this value and ignore the term 𝑡2.

try raise 𝑣11 with 𝑡2 → 𝑡2𝑣11 (Try Error)
2020-11-24 16:31. Page 11 of 1–13.

Christoph Bühler

If a term is evaluated and raises an error, use the term 𝑡2 (the
exception handler) and apply it to the value 𝑣11.

𝑡1 → 𝑡 ′1
try 𝑡1 with 𝑡2 → try 𝑡 ′1 with 𝑡2 (Try)

If there is a step from 𝑡1 to 𝑡 ′1, evaluate the term before eval-
uating other elements like the error handler.

4.10.3 Addition to the typing rules [Pie02].
Γ ⊢ 𝑡1 : T𝑒𝑥𝑛

Γ ⊢ raise 𝑡1 : T (Exception)

If 𝑡1 is a type that can be raised (i.e., it is additional informa-
tion to the error), then the whole expression can be given
the type T since it may be required by the context.

Γ ⊢ 𝑡1 : T Γ ⊢ 𝑡2 : T𝑒𝑥𝑛 → T
Γ ⊢ try 𝑡1 with 𝑡2 : T (Try)

If the first term 𝑡1 is of type T and the second term 𝑡2 is an
exception handler of type T𝑒𝑥𝑛 → T, then the resulting type
of the ‘try ... with ...’ expression will be of type T.

5 Conclusion
With the application of simple types to the 𝜆-Calculus and the
addition of “simple extensions”, the result of this paper is a
form of the “simply-typed 𝜆-Calculus” with extensions to the
language and the type system to make a practical language. It
shows the additions needed and the steps taken to add a type
system to an untyped language. It gives some insight into the
very complex topic of type systems and how they work and
provides explanations for the various mathematical formulas
and derivation trees. It should be noted that the result is not
a fully fledged programming language since subtyping and
polymorphism are still missing which is a big part of modern
languages. The simply-typed 𝜆-Calculus, however, is a good
example for type-science since it is not too complex and can
be extended quite easily.

Appendix
Below, the described additions and extensions will be shown
in TypeScript syntax as well as Haskell syntax to give a
practical example of the created type system. Not all elements
are translateable 1:1.

TypeScript
// Base Types
const foo: string = 'bar';
const nr: number = 42;

// Function Types
const f = () => console.log('');
const fx = x => x * x;

// Unit Type

function f(): void {}

// Sequencing
console.log(42);
console.log(1337);

// Ascription
const foo = 'something' as string;

// Let Bindings
let foo = (x, y) => x+y; // let
const result = foo(1,2) // "in" ...

// Pairs and Tuples
const foo = [42, 'something', true];

// Records
const foo = {name: 'Max', lastname: 'Muster'};

// Sums and Variants
type MyVariant = string | number; // Union Type

// General recursion
const factorial = (n) => n <= 1

? 1
: n * factorial(n-1)

// Lists
const arr: string[] = ['one', 'two', 'three'];

// References
let variable = 1;
const f = () => variable = variable + 1;
f();

// Exceptions
throw 'Something went wrong';

Haskell
-- Base Types
foo = "string"
nr = 42

-- Function Types
f x y = x + y

-- Unit Type
-- Zero element tuple
empty = ()

-- Sequencing
main = do

a <- something
b <- something

2020-11-24 16:31. Page 12 of 1–13.

Adding a type system to an untyped language

return 0

-- Ascription
type MyType = Double * [Char]

-- Let Bindings
f x y =

let calc a b = a + b
in calc x y

-- Pairs and Tuples
pair = (1, 2)
tuple = (1, 2, 3)

-- Records
data Person = Person

{ name :: String
, lastname :: String
}

-- Sums and Variants
data Maybe a = Just a | Nothing
data Weekdays = Monday

| Tuesday
| Wednesday
| Thursday
| Friday
| Saturday
| Sunday

-- General recursion
factorial 0 = 1
factorial 1 = 1
factorial n = n * (factorial n-1)

-- Lists
list = 1 :: 2 :: 3 :: []

-- References
-- Doable with Monads
-- for example with the State-Monad

// Exceptions
error "Something went wrong"

References
[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That.

Cambridge University Press, 1998.
[Car96] Luca Cardelli. Type systems. ACM Comput. Surv., 28(1):263–264,

March 1996.
[Chu40] Alonzo Church. A formulation of the simple theory of types. The

Journal of Symbolic Logic, 5(2):56–68, 1940.
[Chu41] Alonzo Church. The Calculi of Lambda Conversion. (AM-6). Prince-

ton University Press, 1941.

[Ham18] Gary Hammock. Latex listings - javascript & es6. https://github.
com/ghammock/LaTeX_Listings_JavaScript_ES6, 2018. Accessed:
2020-10-10.

[Med12] Gonzalo Medina. How do i put text over symbols?
https://tex.stackexchange.com/questions/74125/how-do-i-
put-text-over-symbols, 2012. Accessed: 2020-10-11.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. The MIT
Press, Cambridge, MA, USA, 2002.

[Sun19] Wu Sun. Use minted syntax highlighting in latex with visual
studio code latex workshop. https://wusun.name/blog/2019-01-
17-minted-vscode/, 2019. Accessed: 2020-10-11.

[Tur37] A. M. Turing. On Computable Numbers, with an Application to
the Entscheidungsproblem. Proceedings of the London Mathemat-
ical Society, s2-42(1):230–265, 01 1937.

2020-11-24 16:31. Page 13 of 1–13.

https://github.com/ghammock/LaTeX_Listings_JavaScript_ES6
https://github.com/ghammock/LaTeX_Listings_JavaScript_ES6
https://tex.stackexchange.com/questions/74125/how-do-i-put-text-over-symbols
https://tex.stackexchange.com/questions/74125/how-do-i-put-text-over-symbols
https://wusun.name/blog/2019-01-17-minted-vscode/
https://wusun.name/blog/2019-01-17-minted-vscode/

	Abstract
	1 Introduction
	2 Lambda-Calculus (-Calculus)
	2.1 Terms
	2.2 Values
	2.3 Numeric Values

	3 Types and Simple Types
	3.1 Types
	3.2 Intermediate Result
	3.3 Simple Types

	4 -Calculus, Simple Types and Extensions
	4.1 Unit Type
	4.2 Ascription
	4.3 Let Bindings
	4.4 Pairs and Tuples
	4.5 Records
	4.6 Sums and Variants
	4.7 General Recursion
	4.8 Lists
	4.9 References
	4.10 Exceptions

	5 Conclusion
	References

