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The “Distributed Authentication Mesh” in [1] is a concept to dynamically
convert authentication information (such as access tokens from OpenID
Connect) to other authentication schemes (like HTTP Basic). In contrast to
“Security Assertion Markup Language” (SAML), the concept does not require
all participants to share the same authentication scheme. It eliminates the
requirement to introduce code changes into existing applications such that
they can support other authentication schemes.

A central part of the mesh is the “common language format”. This format
is eminently important to the mesh because it delivers the users’ identity to
other participants. While the previous project included the concept of the
mesh and implemented a Proof of Concept for the modification of HTTP
headers, it did not provide a definition nor implementation for the common
language format.

This project targets the topic of the common language and analyzes several
possibilities for such a format. The project also defines the objects that
must be transmitted between mesh participants. The concept of the mesh is
extended with a “Rule Engine” that improves the security and versatility of the
mesh. Additionally, this project implements the “Distributed Authentication
Mesh” as open-source software such that it can be operated on Kubernetes.
The conclusion provides further information about the project and possible
topics of follow-up work.

∗I would like to express my appreciation to Mirko Stocker for guiding and reviewing this work. Further-
more, special thanks to Florian Forster, who provided the initial inspiration and technical expertise of
the topic.
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1 Introduction

“Distributed Authentication Mesh” [1] introduces a theoretical foundation for dynamic
authorization in heterogeneous systems. The project, in conjunction with the provided
Proof of Concept (PoC) showed, that it is generally possible to transform the identity
of a user such that the user can be authorized in another application. In contrast to
SAML (Security Assertion Markup Language), the authentication mesh does not require
all participants to understand the same authentication and authorization mechanisms.
Thus, the mesh is designed to work within a heterogeneous authentication landscape.

Figure 1: Proof of Concept for heterogeneous authentication

The PoC was designed to show the ability of heterogeneous authentication. Figure 1
shows two applications that were communicating with each other. The source application
supports OpenID Connect (OIDC) and the “API” application only supports HTTP Basic
authentication. The applications were able to communicate with each other despite the
fact, that they do not share the same authentication mechanism. An Envoy proxy enabled
the dynamic modification of the HTTP headers. Thus, the PoC did modify the HTTP
headers in-flight and replaced the OIDC access token with HTTP Basic credentials.

The project “Distributed Authentication Mesh” mentioned a “common language format”
for the transport, but did not define nor implement it [1]. This project enhances the
concept of the “Distributed Authentication Mesh” by evaluating and specifying the
transport protocol for the common language between services. With this contribution, it
will be possible to implement the authentication mesh on a target platform, since the
common language is crucial for the success of the mesh. To complement the concept,
this work contains an open-source implementation of the mesh for Kubernetes1. The

1https://kubernetes.io/
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implementation is tied to Kubernetes itself, but the concept of the mesh can be adapted
to various platforms like Desktop applications.

The remainder of the report describes prerequisites, used technologies with their ter-
minology and further concepts. Section 3, “State of the Authentication Mesh”, shows
the current version of the concept and which elements are missing. The implementation
section shows the concrete evaluation of the common language format combined with
the definition and application of the chosen format. Since the implemented version of
the mesh runs on Kubernetes, an Operator is created during the implementation to
automate the usage of the authentication mesh to allow a good developer experience.
The conclusion provides an overview of the results of this work and further gives an
outlook for follow-up projects.
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2 Definitions and Clarification of the Scope

This section provides general information about the project, the context, and prerequisite
knowledge. The scope of the project describes what parts of the additional concepts should
be considered. Additionally, this section describes the used technologies (Kubernetes and
some specific patterns) for this project and a general overview about secure communication
between services.

2.1 Scope of the Project

While the project “Distributed Authentication Mesh” addressed the problem of declarative
conversion of user credentials (like an access token from an identity provider) [1], this
project focuses on the “common language format” introduced in the former project. This
project analyses various variants2 for such a common language and further implements
the common language in Kubernetes. Also, we provide an analysis of various methods
to specify and implement such a common language and give an implementation for the
selected common format.

As for the implementation of the mesh, this project provides an open-source implementa-
tion for the public key infrastructure (PKI) that acts as the trust anchor3 for the mesh.
Furthermore, the evaluated pattern for the common language format is implemented
in two different “translators” (HTTP Basic Auth and OpenID Connect). Additionally,
an Operator that provides the automation engine of the mesh in context of Kubernetes
completes the implementation of the mesh.

Service mesh functions, such as service discovery, are not part of the scope. The
authentication mesh should work in conjunction with a service mesh, but does not
provide discovery and automated configuration of services. Software that makes use of
the authentication mesh must be able to handle the HTTP_PROXY and the HTTPS_PROXY
environment variables to redirect their communication to a forward proxy.

Another topic that is not in the scope of this work, is authentication and authorization
of services against the PKI. While there exist mechanisms to authenticate against PKIs,
like the usage of a pre-shared key, it is not part of the scope of this project since all
participants should reside in the same trust zone. Furthermore, mechanisms such as
certificate revocation lists are not implemented in the PKI.

2Such as XML, JSON, JWT and so forth.
3Trust Anchor: root source of trust for a system, such as a “root certificate” in certificate chains.
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2.2 Kubernetes and its Patterns

This section provides knowledge about Kubernetes and two patterns that are used within
this project. Kubernetes itself manages workloads and load balances them on several
nodes (servers) while the used patterns enable more complex applications and use-cases.

2.2.1 Terminology of Kubernetes

To understand further descriptions and concepts, some core terminology must be under-
stood.

A Pod is the smallest possible deployment unit in Kubernetes and contains possible
multiple containers. A Pod is defined by a name and a definition for its containers. The
containers contain an image (containerized image like a Docker4 image) and various
declarations, such as open ports and environment variables.

A Deployment defines the template for a deployed Pod. A deployment defines how
a pod should be deployed and how many pods shall run. Furthermore, a deployment
manages the update strategy when a new definition of the containing pod is created.
This may result in a proper “blue-green deployment” [2], where the new application is
started and when it is ready to receive requests, the old one is terminated. There exist
multiple deployment specifications, such as Deployment and Stateful Set which have
their own use-cases depending on the specification.

A Service makes a Pod (from a deployment) accessible in the Kubernetes world. A
service may provide direct access from the outside world or provides an internal DNS
address for the Pods. Services may remap exposed ports.

An Ingress is a declaration for an entry point to the system. The Ingress points to a
service and provides centralized routing from the outside world into some application that
runs in Kubernetes. The Ingress may contain definitions for hostnames or path information
that are relevant for routing. For an Ingress to function, an IngressController must be
installed within Kubernetes. The controller is responsible to route traffic to the specified
services. Two prominent ingress controllers are “NGINX”5 and “Ambassador”6.

2.2.2 Kubernetes, the Orchestrator of Software

Kubernetes is an orchestration software for containerized applications. Originally devel-
oped by Google and now supported by the Cloud Native Computing Foundation (CNCF)
[3, Ch. 1]. Kubernetes manages the containerized applications and provides access to

4https://www.docker.com/
5https://www.nginx.com/
6https://www.getambassador.io/
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applications via “Services” that use a DNS naming system. Applications are described in
a declarative way in either YAML or JSON.

Figure 2: The Kubernetes Control Loop

Figure 2 shows the Kubernetes “control loop”. A controller constantly observes the actual
state in the system. When the actual state diverges from the desired one (the one that
is “written” in the API in the form of a YAML/JSON declaration) the controller takes
action to achieve the desired state. As an example, a deployment has the desired state of
two running instances, and currently only one instance is running. The controller will
try to start another instance such that the actual state matches the desired one.

2.2.3 An Operator, the Reliability Engineer

The API of Kubernetes is extensible with custom API endpoints (so-called custom
resources). With the help of “CustomResourceDefinitions” (CRDs), a user can extend
the core API of Kubernetes with their own resources [3, Ch. 16]. An Operator runs in
Kubernetes and watches for events on CRDs to manage complex applications. Operators
can act as controllers for CRDs with the same loop logic shown in Figure 2.

Site Reliability Engineering (SRE) is a specific software engineering technique to automate
software. A team of experts use certain practices and principles to run scalable and highly
available applications [4]. Operators are like software for Site Reliability Engineering
(SRE). The Operator can automatically manage a database cluster or other complex
applications that would require an expert with specific knowledge [5].

Two example operators:
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• Prometheus Operator7: Manages instances of Prometheus (open-source monitoring
and alerting software).

• Postgres Operator8: Manages PostgreSQL clusters in Kubernetes.

A partial list of operators available to use is viewable on https://operatorhub.io.

The Prometheus Operator, for example, introduces several CRDs such as Prometheus,
ServiceMonitor and Alertmanager [6]. When the Operator is installed into Kubernetes,
it reacts to create, update and delete events of Prometheus resources. Such a resource
could be:

apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:

name: my-custom-prometheus
spec:

replicas: 2
serviceAccountName: prometheus
serviceMonitorSelector:

matchLabels:
foo: bar

When the resource above is created or updated in Kubernetes, the Operator will be
notified by the Kubernetes API. The Operator then creates a StatefulSet9 that runs
the Prometheus Docker image with the scale of two instances (replicas: 2). Also, the
application will be configured to use a service account named prometheus to run in
Kubernetes and will automatically search for ServiceMonitor resources with a matching
label (foo: bar) to scrape10 [6].

Operators can be created by any means that interact with the Kubernetes API. Normally,
they are created with some SDK that abstracts some of the more complex topics (like
watching the resources and reconnection logic). The following non-exhaustive list shows
some frameworks that support Operator development:

• kubebuilder11: Go12 Operator Framework
• KubeOps13: .NET Operator SDK
• Operator SDK14: SDK that supports Go, Ansible15 or Helm16

• shell-operator17: Operator that supports bash scripts as hooks for reconciling
7https://github.com/prometheus-operator/prometheus-operator
8https://github.com/zalando/postgres-operator
9A form of deployment like Deployment but with certain stateful mechanics inside Kubernetes.

10Scraping: fetch the metrics from the target system and store them with time information
11https://book.kubebuilder.io/
12https://golang.org/
13https://buehler.github.io/dotnet-operator-sdk/
14https://operatorframework.io/
15https://www.ansible.com/
16https://helm.sh/
17https://github.com/flant/shell-operator
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Operators, and software that implements the Operator pattern, are the most complex
extension possibility for Kubernetes, but also the most powerful one [3]. With Operators,
whole applications can be automated in a declarative and self-healing way.

2.2.4 A Sidecar, the Extension to a Pod

Sidecars enhance a Pod by injecting additional containers to the defined one [7].

Figure 3: A Sidecar example

Figure 3 shows an example: A containerized application runs in its Docker image and
writes logs to /var/logs/app.log in the shared file system. A specialized “Log Collector”
sidecar can be injected into the Pod and read those log messages. Then the sidecar
forwards the parsed logs to some logging software like Graylog18.

Sidecars can fulfil multiple use-cases. A service mesh may use sidecars to provide proxies
for their service discovery. Logging operators may inject sidecars into applications to grab
and parse logs from applications. Sidecars are a symbiotic extension to an application [3,
Ch. 5].

2.3 Securing Communication

This section provides the required knowledge about security for this project. Authenti-
cation and authorization are big topics in software engineering and there exist various
standards and mechanisms in the industry. Two of these standards are described below
as they are used in this project to show the use-case of the authentication mesh.

18https://www.graylog.org/
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2.3.1 HTTP Basic Authentication

The “Basic” authentication scheme is defined in RFC7617. Basic is a trivial authen-
tication scheme which provides an extremely low security when used without HTTPS.
Even when used with HTTPS, Basic Authentication does not provide solid security for
applications. It does not use any real form of encryption, nor can any party validate
the source of the data. To transmit basic credentials, the username and the password
are combined with a colon (:) and then encoded with Base64. The encoded result is
transmitted via the HTTP header Authorization and the prefix Basic [8]. Therefore,
the username “test” with the password “high-secret” would result in the header: Basic
dGVzdDpoaWdoLXNlY3JldA==.

2.3.2 OpenID Connect

OIDC (OpenID Connect) is not specified by an RFC, but by a specification provided
by the OpenID Foundation (OIDF). However, OIDC extends OAuth, which in turn
is defined by RFC6749. OIDC is an authentication scheme that extends OAuth 2.0.
The OAuth framework only defines the authorization part and how access is granted to
data and applications. OAuth, or more specifically the RFC, does not define how the
credentials are transmitted [9].

OIDC extends OAuth with authentication, such that it enables login and profile capa-
bilities. OIDC defines three different authentication flows: Authorization Code Flow,
Implicit Flow and the Hybrid Flow. These flows specify how the credentials must be
transmitted to a server and in which format they return credentials that can be used to
authenticate a user [10].
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Figure 4: OIDC Authorization Code Flow

As an example, Figure 4 shows a user that wants to access a protected application.
The user is forwarded to an external login page (Identity Provider) and enters his
credentials. When they are correct, the user gets redirected to the web application with
an authorization code. The code is used to fetch an access and ID token for the user.
These tokens identify, authenticate and authorize the user. The application is now able
to provide the access token to the API (Relying Party). The API itself is able to verify
the presented token to validate and authorize the user.

2.3.3 Trust Zones and Zero Trust

Trust zones are the areas where software “can trust each other”. When an application
verifies the presented credentials of a user and allows a request, it may access other
resources (such as APIs) on the users’ behalf. In the same trust zone, other resources
can trust the system, that the user has presented valid credentials at some point.

14



Figure 5: Example of a Trust Zone

As an example, we consider Figure 5. The API gateway is the only way to enter the trust
zone. All applications (“Frontend Application” and “Additional API” among others) are
shielded from the outside and access is only granted via the gateway. In this scenario, a
user first accesses the frontend application and is redirected to the login page. According
to the authorization code flow in Figure 4, the frontend application can fetch an access
token when the user returns from the login. Then, the user presents his OIDC credentials
via HTTP header to the frontend application and the app can verify the token with the
IAM (Identity and Access Management) if the credentials are valid. Since the additional
API resides in the same trust zone, it does not need to check if the credentials are valid
again, the frontend can call the API on the users’ behalf.

In contrast to trust zones, “Zero Trust” is a security model that focuses on protecting
(sensitive) data [11]. Zero trust assumes that every call could be intercepted by an
attacker. Therefore, all requests must be validated. As a consequence, the frontend in
Figure 5 is required to send the user token along with the request to the API and the
API checks the token again for its validity. For the concept of zero trust, it is irrelevant
if the application resides in an enterprise network or if it is publicly accessible.

A concern to address, in zero trust or authentication in general, is the authentication of
the authenticator. Who assures that, in the given example, the IAM is not a corrupted
instance that allows attackers to inject faulty information? Such authentication software
is hardened and developed over several months and years. It is not possible to create
the perfect safe application. But a partial solution is to use well-known software19 and
applications to provide the safest possible implementations of such software.
19For example “Auth0”, “Keycloak” or “Octa” among others.
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3 State of the Authentication Mesh

This section shows the deficiencies that this project tries to solve. Since this project
enhances the concepts of the “Distributed Authentication Mesh”, many elements are
already defined in the past work.

Common Language Format for Communication

The “Distributed Authentication Mesh” defines an architecture that enables dynamic
conversion of user identities in a declarative way [1]. The common language format
however, is neither defined nor implemented yet. Past work did implement a Proof
of Concept (PoC) to show the general idea, but did not prove the feasibility with the
common language format. To enable the creation of a production-grade software based
on the concepts of the authentication mesh, the common language must be defined and
specified.

Figure 6: General communication flow of two services in the distributed authentication
mesh

Figure 6 shows the communication between two services that are part of the distributed
authentication mesh. The communication of the app in service A is proxied and forwarded
to the translator. The translator then determines if the request contains any relevant
authentication information. Then the translator converts the information into a common
language format that the translator of service B understands. After this step, the proxy
forwards the communication to service B. The proxy in service B will recognize the custom
language format in the HTTP headers and uses its transformer to create valid credentials
(such as username/password) out of the custom language format, such that the app of
service B can authenticate the user. If service A and B use the same authentication
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scheme, this transformation is not needed. However, if a heterogeneous authentication
landscape is present, where service A uses OIDC and service B is a legacy application
that only supports Basic Auth, the need for transformation arises.

The mentioned common language format is not specified. This project analyzes various
forms of such a common language and specifies the language along with the requirements.
Furthermore, an implementation shall be provided for Kubernetes to see the concepts in
a productive environment.
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4 Implementing a Common Language and a Mesh Operator

This section analyzes different approaches to utilize a common language format between
the services of the “Distributed Authentication Mesh”. After the analysis, the definition
and implementation of the common format enhances the general concept of the Mesh
and enables a production-grade software. The PKI and the translators are written in
Go, while the Kubernetes Operator is written in C#. All software is licensed under the
Apache-2.0 license and can be found in the “WirePact” organization on GitHub20.

4.1 Goals and Non-Goals of the Project

As mentioned, this project enhances the concept of the distributed authentication mesh
by analyzing various ways of transmitting the user identity and defining a meaningful
way to transport the identity between participants. As such, the goals and non-goals of
this project remain the same as in the past work of the distributed authentication mesh
[1, Ch. 4].

Additional functional requirements:

• The translator generates/parses the common language format.
• The translator is able to validate the integrity of the transmitted identity.

Additional non-functional requirements:

• The common language contains all needed information to identify a user.
• The translator acts as proxy for the services behind the mesh. This ensures that

requests can be intercepted for applications that are part of the mesh.
• The usage of the authentication mesh shall provide a good developer experience.

The two lists above extend the existing requirements from the past work in [1]. In general,
the system must not be less secure than the current existing security standards. The
definition of the common language format must contain a way to check the integrity of
the transmitted data and the translators must not interfere with the data stream and
must only modify HTTP headers.

4.2 A Way to Communicate with Integrity

To enable the translators in the distributed authentication mesh to communicate securely,
a common format must be used [1]. The format must support a feasible way to prevent
modification of the data it transports. The following sections give an overview over the
three options that may be used. In the end of the section a comparison shows pro and
contra to each option and a decision towards a format is made.

20https://github.com/WirePact
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4.2.1 YAML, XML, JSON, and Others

YAML (YAML Ain’t Markup Language21), XML (Extensible Markup Language22),
JSON (JavaScript Object Notation23) and other structured data formats such as binary
serialized objects in C# are widely used for data transport. They are typically used
to transport structured data in a more or less human-readable form but maintain the
possibility to be serialized and deserialized by a machine. Those structures could be used
to transport the identity of an authenticated user. However, the formats do not support
integrity checks by default.

userId: 123456
userName: Test User

The example above shows a simple YAML example with an “object” that contains two
properties: userId and userName. These objects can be extended and well typed in
programming languages.

There exist approaches like “SecJSON” that enhance JSON with security mechanisms
such as data encryption [12]. But if the standard of the specification is used, no integrity
check can be performed and the translators of the authentication mesh cannot detect if
the data was modified. Thus, using a “simple” structured data format for the transmission
of the user identity would not suffice the security requirements of the system.

Similar to “SecJSON”, one could add special fields into XML and/or YAML to transmit
a hash of the data such that the receiver can validate the data. However, using custom
fields does not rely on current standards and are therefore prone to errors implementation
wise.

4.2.2 X509 Certificates

The x509 standard (RFC5280) defines how certificates shall be used. Today, the
connection over HTTPS is done via TLS and certificate encryption. The fields in a
certificate are only partially defined. These “standard extensions” are well-known fields
such as the “authority” or alternative names for the subject. In the specification, “private
extensions” are another possibility to encode data into certificates [13, Ch. 4]. These
extensions could be used to transmit the data needed for the distributed authentication
mesh.

Certificates have a big advantage: they can be integrity checked via already implemented
hashing mechanisms and provide a “trust anchor”24 in the form of a root certificate
authority (root CA). Furthermore, if certificates would be used to transmit the users’

21https://yaml.org/
22https://www.w3.org/XML/
23https://www.json.org/
24A trust anchor is a root for all trust in the system.
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identity within the authentication mesh, the certificates could also be used to harden the
communication between two services. The certificates can enable mutual TLS (mTLS)
between communicating services.

But, implementing custom private fields and manipulating that data is cumbersome in
various programming languages. In C# for example, the code to create a simple x509
certificate can span several hundred lines of code. Go25 on the other hand, has a much
better support for manipulating x509 certificates. Since the result of this project should
provide a good developer experience, using x509 certificates is not be the best solution to
solve the communication and integrity issue. If future work implements mTLS to harden
the communication between services, it may be feasible to transmit the users’ identity
within the used certificates.

4.2.3 JSON Web Tokens

A plausible way to encode and protect data is to encode them into a JSON web token
(JWT). JWTs are used to encode the user identity in OpenID Connect and OAuth 2.0. A
JWT contains three parts: A “header”, a “payload” and the “signature” [14]. The header
identifies which algorithm was used to sign the JWT and can contain other arbitrary
information. The payload carries the data that shall be transmitted. The last part of the
JWT contains the constructed signature of the header and the payload. This signature is
constructed by either a symmetrical or asymmetrical hashing algorithm.

To make use of JWTs in the distributed authentication mesh, another technique for
JWTs is used: JSON Web Signatures (JWS). JWS represents data that is secured with a
digital signature [15]. When considering JWT/JWS for the mesh, a signed token that
contains the user ID could be used with key material from the PKI to sign the data and
provide a way to securely transmit the data. Since the data is not confidential (typically
only a user ID), it must be signed only. To help prevent extra round trips, the two extra
headers x5c and x5t can be used to transmit the certificate chain as well as a hash of
the certificate to the proxy that is checking the data [15].

In contrast to the above-mentioned “SecJSON”, a JWT is well-defined by an RFC.
SecJSON enables encrypted data within JSON but does lack the means of integrity
checking. A JWT does not encrypt the data but uses JWS for hashing and signing of
the data to prevent modification of the data.

4.2.4 Using JWT in the Authentication Mesh

After considering the possible transport formats above, we can now analyze the pro
and contra arguments. While structured formats like YAML and JSON are widely
known and easily implemented, they do not offer a built-in mechanism to prevent data

25https://go.dev/
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manipulation and integrity checking. There are standards that mitigate that matter, but
then one can directly use JWT instead of implementing the mechanism by themselves.

X509 certificates provide an optimal mechanism to transmit extra data with the certificate
itself with “private extensions”. They could also be used to enable mTLS between services
to further harden the communication between participants of the mesh. However, to
enable developers to implement custom translators by themselves, x509 certificates are
not optimal since the code to manipulate them heavily depends on the used programming
language.

JWT uses the best of both worlds. They are asynchronously signed with a x509 certificate
private key and can transmit the certificate chain as well as a hash of the signing certificate
to prevent manipulation. There exist various libraries for many programming languages
like Java, C# or Go. Also, JWTs are already used in similar situations like the ID tokens
for OpenID Connect.

4.3 A Public Key Infrastructure as Trust Anchor

The implementation of a PKI is vital to the authentication mesh. The participating
translators must be able to fetch valid certificates to sign the JWTs they are transmitting.
The PKI can be found at: https://github.com/WirePact/k8s-pki. The PKI must fulfill
the use cases depicted in Figure 7.

Figure 7: Use Case Diagram for the PKI

Fetch CA Certificate. Any translator must have access to the root CA (certificate
authority) to validate the signatures of received JWTs. The signing certificates of the
translators are derived by the CA and can therefore be validated if they are authorized
to be part of the mesh.

Sign Certificate Signing Requests. The participating clients (translators) must be
able to create a certificate signing request (CSR) and send them to the PKI. The PKI
does create valid certificates that are signed with the root CA and then returns the
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created certificates to the clients. To validate the certificate chain, an interested party
can fetch the public part of the root CA via the other mentioned endpoint and check if
the chain is valid.

4.3.1 “Gin”, a Go HTTP Framework

To manage HTTP request to the PKI, the “Gin”26 framework is used. It allows easy
management of routing and provides support for middlewares if needed. To set up the
CA, the following code enables a web server with the needed routes to /ca and /csr:

router := gin.Default()

router.GET("ca", api.GetCA)
router.POST("csr", api.HandleCSR)

4.3.2 Prepare the CA

Since the implementation targets a local environment (for development) as well as the
Kubernetes environment, the CA and the private key can be stored in multiple ways. For
local development, the certificate with the private key is created in the local file system.
If the PKI runs within Kubernetes, a Secret (encrypted data in Kubernetes) shall be
used.

26https://github.com/gin-gonic/gin
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Figure 8: Prepare CA method in the PKI on Startup

During the startup of the PKI, a “prepare CA” method runs and checks if all needed
objects are in place. Figure 8 shows the invocation sequence of the method. If the
PKI runs in “local mode” (meaning it is used for local development and has no access
to Kubernetes), the CA certificate and private key are stored in the local file system.
Otherwise, the Kubernetes secret is prepared and the certificate loaded/created from the
secret.

To create a new CA certificate, the following code can be used:

ca := &x509.Certificate{
SerialNumber: big.NewInt(getNextSerialnumber()),
Subject: pkix.Name{

Organization: []string{"WirePact PKI CA"},
Country: []string{"Kubernetes"},
CommonName: "PKI",

},
NotBefore: time.Now(),
NotAfter: time.Now().AddDate(20, 0, 0),
IsCA: true,
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ExtKeyUsage: []x509.ExtKeyUsage{
x509.ExtKeyUsageClientAuth,
x509.ExtKeyUsageServerAuth,

},
KeyUsage: x509.KeyUsageDigitalSignature |

x509.KeyUsageCertSign,
BasicConstraintsValid: true,

}

privateKey, _ := rsa.GenerateKey(rand.Reader, 2048)
publicKey := &privateKey.PublicKey
caCert, err := x509.CreateCertificate(

rand.Reader,
ca,
ca,
publicKey,
privateKey)

The private key is generated with a cryptographically secure random number generator.
After the certificate is generated, it can be encoded and stored in a file or the Kubernetes
secret. The CA certificate is created with a 20-year lifetime. A further improvement to
the system could introduce short-lived certificates to mitigate attacks against the CA.

4.3.3 Deliver the CA

As soon as the preparation process in Figure 8 has finished, the CA certificate is ready
to be delivered in-memory. This process does not need any special processing power.
When a HTTP GET request to /ca arrives, the PKI will return the public certificate part
of the root CA to the caller. This call is used by translators and other participants of the
authentication mesh to store the currently valid root CA by themselves and to validate
the certificate chain.

context.Header(
"Content-Disposition",
`attachment; filename="ca-cert.crt"`)

context.Data(
http.StatusOK,
"application/x-x509-ca-cert",
certificates.GetCA())

The only specialty is the data type headers that are set to application/x-x509-ca-cert.
While they are not necessary, the headers are added for good practice.

The GetCA() method itself just returns the public CA certificate:

func GetCA() []byte {
return pem.EncodeToMemory(
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&pem.Block{Type: "CERTIFICATE", Bytes: ca.Raw})
}

The certificates are “PEM”27 encoded.

Figure 9: Deliver public certificate invocation

The process to deliver the CA is not very complex, as is shown in Figure 9. As soon as
the startup process in Figure 8 is finished, the PKI can return the public part of the
certificate to any client that sends a HTTP GET to /ca of the PKI.

4.3.4 Process Certificate Signing Requests (CSR)

To be able to sign CSRs, as stated in Figure 7, the PKI must be able to parse and
understand CSRs. The PKI supports a HTTP POST request to /csr that receives a body
that contains a CSR.

27PEM Encoding: https://de.wikipedia.org/wiki/Privacy_Enhanced_Mail
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Figure 10: Invocation sequence to receive a signed certificate from the PKI.

The sequence in Figure 10 runs in the PKI. Since the certificate signing request is
prepared with the private key of the translator (or any other participant of the mesh),
no additional keys must be created. The PKI signs the CSR and returns the valid
client certificate to the caller. The caller can now sign data with the private key of the
certificate and any receiver is able to validate the integrity with the public part of the
certificate. Furthermore, the receiver of data can validate the certificate chain with the
root CA from the PKI.

If no CSR is attached to the HTTP POST call, or if the body contains an invalid CSR,
the PKI will return a HTTP Bad Request (status code 400) to the sender and abort the
call.
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4.3.5 Authentication and Authorization against the PKI

In the current implementation, no authentication and authorization against the PKI
exists. Since the current state of the system shall run within the same trust zone, this is
not a big threat vector. However, to truly achieve a distributed authentication mesh, a
mechanism to create trust between several trust zones must be implemented.

A security consideration in the distributed authentication mesh is the possibility that
any client can fetch a valid certificate from the PKI and then sign any identity within
the system. To harden the PKI against unwanted clients, two possible actions can be
taken.

Use a pre-shared key to authorize valid participants. With a pre-shared key, all
valid participants have the proof of knowledge about something that an attacker should
have a hard time to come by. In Kubernetes this could be done with an injected secret
or a vault software28.

Use an intermediate certificate for the PKI. When the PKI itself is not the absolute
trust anchor (the root CA), an intermediate certificate could be delivered as a pre-known
secret. Participants would then sign their CSRs with that intermediate certificate and
therefore proof that they are valid participants of the mesh.

In either way, both options require the usage of pre-shared or pre-known secrets. Ad-
ditional options to mitigate this attack vector are not part of this project and shall be
investigated in future work.

4.4 Provide a Translator Base

To enable developers to create translators easily, the GitHub organization “WirePact”29

provides a translator base package written in Go. This package contains helpers and
utilities that are needed in a translator and further provide a developer friendly way
to implement a translator. The package is available on the GitHub repository https:
//github.com/WirePact/go-translator.

4.4.1 Define the Common Identity

The distributed authentication mesh needs a single source of truth. It is not possible to
recover user information out of arbitrary information. As an example, an application
that uses multiple services with OIDC and Basic Auth needs a common “base of users”.
Even if the authentication mesh is not in place, the services need to know which basic
authentication credentials they need to use for a specific user.

28Like “HashiVault” https://www.vaultproject.io/
29WirePact: The development name for the distributed authentication mesh.
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Figure 11: Definition of the Common Identity

As shown in Figure 11, the definition of the common identity is quite simple. The
only field that needs to be transmitted is the subject of a user. The subject (or sub)
field is defined in the official public claims of a JWT [14, Sec. 4.1.2]. Any additional
information that is provided may or may not be used. Since the system is designed to
work in a heterogeneous landscape, the common denominator is the users’ ID. For some
destinations, additional information could be helpful, but it is not guaranteed that the
information is available at the source.

4.4.2 Startup a Translator

When a translator is created with the NewTranslator() function of the translator
package, a struct type is instantiated that provides some utility functions. Upon creation,
the new translators contains two web-servers with the configured ingress and egress ports.
Those web-servers are configured to listen to gRPC calls from envoy. The servers in the
translator are created but not yet started. They are ready to be run.
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Figure 12: Startup Sequence of a Translator

Figure 12 shows the startup sequence for a translator that was created with the pro-
vided package. As soon as the translator gets started (with translator.Start()), the
translator first ensures its own key material. This means, that a private key for the local
certificate is generated if it does not exist. Further, if the local certificate does not exist,
a certificate signing request (CSR) is created and sent to the PKI. Upon success, the
PKI returns a valid and signed certificate that the translator can use to sign the JWTs.
The last preparation step is to fetch the public part of the CA certificate from the PKI
to validate incoming JWTs.

When the preparations for the key material are done, two go routines start the web-servers
(listeners) for incoming and outgoing request authentication.

go func() {
logrus.Info("Serving Ingress")
err := translator.

ingressServer.
Serve(*translator.ingressListen)

if err != nil {
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logrus.
WithError(err).
Fatal("Could not serve ingress.")

}
}()

These listeners are now ready to receive gRPC calls from Envoy. Envoy must be configured
to send an authentication check for all intercepted incoming and outgoing calls to the
respective destination. The translator now awaits an interrupt, terminate or kill signal
to gracefully shut down the listeners.

4.4.3 Provide Endpoints for Interception

On top of the mentioned listeners are two wrapper methods. A developer provides the
ingress and egress function to the library, which in turn then encapsulates the functions
with the effective gRPC call from Envoy. When creating a translator, the provided egress
function just receives the CheckRequest and the ingress function receives a string for
the parsed subject (user ID) and the CheckRequest from Envoy as parameters. They
return their respective result (IngressResult and EgressResult) which then decides
the fate of the request.

result, err := server.EgressTranslator(req)
if err != nil {

return nil, err
}

if result.Skip {
return envoy.CreateNoopOKResponse(), nil

}

if result.UserID == "" {
return envoy.CreateForbiddenResponse(

"No UserID given for outbound communication."
), nil

}

if result.Forbidden != "" {
return envoy.CreateForbiddenResponse(result.Forbidden),

nil
}

return envoy.CreateEgressOKResponse(
server.JWTConfig,
result.UserID,
result.HeadersToRemove

)
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The function above shows the logic for outgoing (egress) communication. The developer
provides the server.EgressTranslator(req) implementation at the start of the trans-
lator. The package then in turn calls this function and handles the result according to
the logic above.

wirePactJWT, ok := req.Attributes.
Request.Http.
Headers[wirepact.IdentityHeader]

if !ok {
return envoy.CreateNoopOKResponse(), nil

}

subject, err := wirepact.GetJWTUserSubject(wirePactJWT)
if err != nil {

return nil, err
}

result, err := server.IngressTranslator(subject, req)
if err != nil {

return nil, err
}

if result.Skip {
return envoy.CreateNoopOKResponse(), nil

}

if result.Forbidden != "" {
return envoy.CreateForbiddenResponse(

result.Forbidden
), nil

}

return envoy.CreateIngressOKResponse(
result.HeadersToAdd,
append(result.HeadersToRemove, wirepact.IdentityHeader)

), nil

On the other hand, incoming (ingress) communication requires an extra step. First, a
check ensures that the authentication mesh header is present. If not, the request gets
forwarded to the destination without any interruption. If a JWT is present, the JWT
is decoded and the subject (user ID) extracted. The next step involves the provided
server.IngressTranslator from the developer that coded the translator. The last step
is similar to egress communication, where the result of the translator function is parsed
and executed accordingly.
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4.4.4 Encode the JWT

Since the chosen technology to transport the users’ identity is a JSON web token, the
package provides a simple way to en-, and decode the JWTs. One thing that must be
provided to the JWT is the subject (i.e. the users ID). Since we defined that the only
required thing for the identity is the user ID (see Figure 11), we encode it in the official
specified JWT way and name it “sub” (i.e. “subject”).

Figure 13: Encode and Sign a JWT

The logic in Figure 13 shows what happens to a user ID if a JWT shall be created. The
JWT headers (x5c and x5t) are created from the local certificate chain and the fetched
CA certificate from the PKI. Those headers are used by the receiving party to check if the
JWT is valid and from a participant of the authentication mesh. Next, the JWT claims
are configured (subject, issuer, expiry date and so forth) and the token is signed. The
signed token is then injected into the HTTP call with a special x-wirepact-identity
header.

4.4.5 Decode the JWT

On the receiving side, the process is reversed.
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Figure 14: Decode JWT and Extract Subject

Figure 14 shows the process for incoming communication. When the translator receives a
call from the outside world that contains the mesh HTTP header (x-wirepact-identity),
then the process runs. First, the encoded header data is parsed as JWT. Next, the
translator checks, if the encoded certificate chain (x5c) is valid and matches its own
CA certificate. Then the attached certificate hash (x5t) is checked against the signing
certificate of the source (which must be the first certificate in the provided certificate
chain). The headers that are checked are defined in the JWT specification [15]. If a
subject can be extracted, the developers code will be called and in the end, the request
is forwarded if everything went fine.

4.5 Implementing an HTTP Basic Translator with a Secure Common Identity

This section describes the usage of the secure common identity mentioned above within
a translator. The translator uses HTTP Basic Auth (RFC7617 [8]) for the user-
name/password combination. The implementation is hosted on https://github.com/Wir
ePact/k8s-basic-auth-translator.
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4.5.1 Validate and Encode Outgoing Credentials

Any application that shall be part of the authentication mesh must either call the injected
forward proxy by itself, or it should respect the HTTP_PROXY environment variable, as
done by Go and other languages/frameworks. Outgoing communication (“egress”) is
processed by the envoy proxy with the external authentication mechanism [1]. The
following results exist:

• Skip: Do not process any headers or elements in the request
• UserID empty: forbidden request
• Forbidden not empty: for some reason, the request is forbidden
• UserID not empty: the request is allowed

Figure 15: Skipped/Ignored Egress Request

Figure 15 shows the sequence if the request is “skipped”. In this case, skipped means
that no headers are consumed nor added. The request is just passed to the destination
without any interference. This happens if, in the case of Basic Auth, no HTTP Authorize
header is added to the request or if another authentication scheme is used (OIDC for
example). The possibility to skip a request enables front-facing applications to still receive
normal requests that do not contain any authentication information. As an example, this
can happen when an application periodically calls some service that does not need any
credentials. The neutral request must not be rejected or forbidden.
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Figure 16: Unauthorized Egress Request

Figure 16 depicts the process when the request contains a correct HTTP header, but
the provided username/password combination is not found in the “repository” of the
translator. So, no common user ID can be found for the given username and therefore,
the provided authentication information is not valid.

Figure 17: Forbidden Egress Request

In Figure 17, the HTTP header is present, but corrupted. For example, if the user-
name/password combination was encoded in the wrong format. If this happens, the proxy
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will reject the request and never bother the destination with incorrect authentication
information.

Figure 18: Processed Egress Request

If a request contains the correct HTTP header, the data within is valid and a user can
be found with the username/password combination, Figure 18 shows the process of the
request. The translator instructs the forward proxy to consume (i.e. remove) the HTTP
authorize header and injects a new custom HTTP header x-wirepact-identity. The
new header contains a signed JWT that contains the user ID as the subject and the
certificate chains as well as a hash of the signing certificate in its headers.

4.5.2 Validate and Decode an Incoming Identity

The transformer also intercepts incoming connections via the external authentication
feature of envoy. If a call contains the specified HTTP header (x-wirepact-identity)
that contains a JWT, the translator tries to validate the information. In general, there
exist four different reactions of the translator:

• Skip: if no information is given that relates to the authentication mesh.
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• Error: if any error happens during validation.
• Forbidden: if the request is forbidden for any reason.
• OK: if the request is valid and the information about the user could be gathered.

Figure 19: Skipped/Ingored Ingress Request

In Figure 19, the process for a neutral request is shown. The request contains no specific
information that is relevant for the authentication mesh. Since the translator may not
interfere with requests that are not “part of the mesh”, the request is skipped. The
destination application may handle the request appropriately. As an example, the target
application can request the source of the request to sign in. This process allows normal
requests to be handled in the mesh. If all requests without mesh information would be
blocked, no “normal” request could be sent.

Figure 20: Errored Ingress Request
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Error handling in the translator is bound to return forbidden responses. The translator
should not throw any errors if possible [1]. But if there are some errors, the translator
returns a forbidden request to deny access to the destination as seen in Figure 20. If the
translator would just skip the request, this could make the system vulnerable against
error attacks, where an attacker could force some error to happen in the translator and
then reach the destination.

Figure 21: Forbidden Ingress Request

If the incoming request contains an x-wirepact-identity HTTP header and the subject
of the user could be extracted successfully, the translator searches for a username/password
combination in its repository. If no credentials are found, as shown in Figure 21, the
request is denied. No valid credentials mean that the translator cannot attach valid basic
credentials for the target system.
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Figure 22: Successful Ingress Request

In contrast to the situations above, Figure 22 shows the successful request. If the subject
could be parsed, validated and there exists a proper username/password combination in
the translators’ repository, the translator instructs envoy to consume (i.e. remove) the
artificial mesh header and attach the basic authentication header for the target system.
In this case, the target system receives valid credentials that it can validate despite the
fact that the original source may not have used basic authentication.

4.5.3 Contrast to an OIDC Translator

Since the HTTP Basic translator mentioned above has a common base with other
translators, any other authentication/authorization mechanism can be programmed into
a translator. As a further example, and to demonstrate the feasibility of the solution,
another translator that handles OpenID Connect (OIDC) was created. The translator
resides on GitHub in the repository https://github.com/WirePact/k8s-keycloak-oidc-
translator.

The OIDC translator is specifically implemented to work in conjunction with a “Key-
cloak”30 instance. Keycloak is an open-source identity and access management (IAM)

30https://www.keycloak.org/
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system that provides the necessary configuration interface to easily use OIDC within
your system architecture.

The differences of the OIDC translator to the HTTP Basic Translator are as follows:

• Other configuration (ISSUER, CLIENT_ID, and CLIENT_SECRET) needed
• Reacts to Authorization: Bearer ... headers
• Fetches user access token via token exchange31

The basic logic of the translator remains the same. If an outgoing request contains an
authorization HTTP header, the header will be consumed. The access token is validated
against Keycloak and if it returns a subject (i.e. user-ID) via the introspection endpoint
of Keycloak, the ID is encoded in the JWT and then forwarded. On the receiving side,
if the specialized custom HTTP header is attached to any request, the translator tries
to extract the users’ ID from the request. If successful, the translator acquires a valid
service-account access token that has the proper permissions on Keycloak to perform
a token exchange with impersonation. With the token exchange, the translator is able
to create and fetch a valid access token on behalf of the user. The new access token is
attached to the HTTP request and forwarded to the destination. As such, the destination
can validate the access token and will receive a valid response from Keycloak. This
concept can be adapted to other authentication schemes (e.g. LDAP).

4.6 Automate the Authentication Mesh

The basic concept of the distributed authentication mesh allows the usage of the mesh
on all possible platforms. Any platform that wants to participate in the mesh must be
able to intercept incoming and outgoing traffic and modify HTTP headers [1]. However,
in cloud environments such as Kubernetes, software can be added and removed based
on manifest files. In Section 2, the concept of an Operator shows how the Kubernetes
API can be extended to manage complex applications. But an Operator is not bound to
“manage applications”. During the implementation phase of this project, an Operator
was created for the distributed authentication mesh. It allows users of Kubernetes to
dynamically add and remove applications to the mesh via Custom Resource Definitions
(CRDs).

The open-source code of the Operator is hosted on GitHub in the repository https:
//github.com/WirePact/k8s-operator. The Operator is written in C# with the help
of the operator SDK “KubeOps”32. “KubeOps” is an SDK that helps with developing
Kubernetes Operators. It abstracts certain aspects of Operators, such as the “watcher”
logic that needs to be registered within Kubernetes to receive events about certain
entities.

31Explained in the documentation of Keycloak: https://www.keycloak.org/docs/latest/securing_apps
/#_token-exchange

32https://github.com/buehler/dotnet-operator-sdk
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4.6.1 Use-Cases for the Operator

The Operator must support certain use-cases to have value in the system. It shall help
developers to attach applications to the Distributed Authentication Mesh in a declarative
way.

Figure 23: Use-Case Diagram for the Operator

Figure 23 shows the four primary use-cases of the Operator. They are described in a
brief form below.

Ensure PKI: The Operator must ensure that there exists a PKI. There must only
exist one in the system, otherwise, some participants and translators would use the
wrong certificate authority. This results in the inability to communicate with other
participants.

Reconcile PKI: The Operator is responsible to create a valid and correctly configured
“Deployment”, as well as a “Service” for the created PKI. The deployment will run the
PKI with the configured container image and the service will allow participants and
translators to call the PKI via a system-wide DNS address.

Validate Participants: When a user tries to create a “mesh participant”, the Operator
is responsible to check if it is valid. For example, the Operator needs to validate that
there exists a deployment target and a service that actually want to participate in the
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authentication mesh. If one of those vital elements do not exist, the Operator shall reject
the participant definition.

Reconcile Participants: The Operator reconciles “mesh participants”. Thus, when a
participant is created, the Operator modifies the target deployment and injects the re-
quired sidecars and modifies service ports to route the communication through the injected
proxy application. Furthermore, the Operator must configure the proxy correctly.

4.6.2 Custom Entities for Kubernetes

The Operator uses CRDs to manage and reconcile the participants of the Distributed
Authentication Mesh. This section describes the custom entities and their specifications
in detail.

Figure 24: Custom Resource Definition for a Credential Translator

4.6.2.1 Credential Translator The credential translator, as shown in Figure 24, is one
of the core elements in the authentication mesh and the automation engine. This CRD
defines translators that the Operator and a mesh participant may use. These definitions
can be seen as the “inventory” of the Operator that contains the effective container
images for translators. This enables developers to create custom translators and inject
them into the mesh even if the core system does not support the particular authentication
translator.

apiVersion: wirepact.ch/v1alpha1
kind: CredentialTranslator
metadata:

name: basic-auth
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spec:
image: ghcr.io/wirepact/k8s-basic-auth-translator:latest

The declaration above shows an example of such a translator. This is the entity that is
stored within Kubernetes when the operator is installed. It does enable the Operator
to use the HTTP Basic translator mentioned above. Additionally, the Keycloak OIDC
translator is available as well.

Figure 25: Custom Resource Definition for a PKI

4.6.2.2 PKI Figure 25 shows the definition for a PKI. When the operator fires up, it
checks if a PKI already exists. If not, the operator shall create a PKI such that at most
one PKI exists for the mesh. The specification contains the container image, a port, and
a (Kubernetes-)secret-name. The port defines on which port the PKI will be available for
/ca and /csr calls and the secret name is a reference to a Kubernetes secret. The secret
is used to store the serial number, ca certificate, and private key for the PKI. The status
of the entity shall be updated by the Operator when a PKI is deployed to the cluster. It
must contain the DNS address on which the PKI will be reachable.
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Figure 26: Custom Resource Definition for a Mesh Participant

4.6.2.3 Mesh Participant The mesh participant in Figure 26 enables developers to
actually participate in the distributed authentication mesh by defining a deployment and
a service. The specification contains the reference to the targeted Kubernetes deployment
as well as the Kubernetes service. The target port enables the Operator to correctly
configure the Envoy proxy and adjusting the service. The two properties for Env and
Args enable the Operator to set up the translator that is injected as a sidecar into
the deployment. It may contain additional environment variables and/or command-line
arguments that are attached to the translator. This could be used to configure a translator
that needs special information about a user repository or something similar.

apiVersion: wirepact.ch/v1alpha1
kind: MeshParticipant
metadata:

name: participant
spec:

deployment: deploy
service: svc
targetPort: 8080
translator: keycloak-oidc-translator
env:

ISSUER: http://keycloak.localhost/
CLIENT_ID: demo
CLIENT_SECRET: very_secret

The example participant above shows the specification needed to run the Keycloak OIDC
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translator for a deployment (“deploy”) with a specific service (“svc”). The communi-
cation on port “8080” shall be intercepted by the mesh and the translator in question
is “keycloak-oidc-translator”, for which a CredentialTranslator definition with
that exact name must exist. As additional environment variables, the issuer, client ID,
and client secret variables are passed to the translator such that it can obtain the access
tokens from Keycloak.

4.6.3 Managing the Public Key Infrastructure

One of the use-cases mentioned in Figure 23 is managing and reconciling a centralized
PKI for the authentication mesh.

Figure 27: Task for the Startup of the Operator to Ensure a PKI

The startup task in Figure 27 is fairly simple. When the Operator starts, a hosted
background service starts (IHostedService implementation in .NET) and checks if there
are any PKI available. If there are, nothing happens. If not, the Operator creates a
PKI entity and stores it within Kubernetes. This will trigger a “normal reconciliation”
loop for the entity. This startup process can be further improved by checking the
PKI count constantly with a timer instead of just checking when the operator starts.
Additionally, a Kubernetes label could ensure that exactly one PKI exists for this
particular authentication mesh.
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Figure 28: Reconciliation of a PKI

When a reconciliation loop fires for a PKI definition, the Operator takes several steps to
deploy the PKI within its own namespace. Figure 28 shows the steps that are needed to
reconcile a PKI. First, the Operator checks if the secret (defined in “secretName”) exists,
then if the deployment and the service exist. If any of those elements does not exist, the
Operator creates the entities and stores them within Kubernetes. This reconciliation
loop is not very complex and only creates a valid deployment as well as a service to
enable access to the PKI within Kubernetes.
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4.6.4 Reconciling Authentication Mesh Participants

The process to reconcile a mesh participant is more complex than the reconciliation of
a PKI. To fulfil the use-case “Reconcile Participants” in Figure 23, the operator needs
to adjust the specified deployment and service very heavily. When a reconciliation for
a MeshParticipant is requested, the Operator performs the following actions one by
one:

1. Check if the specified translator (CredentialTranslator entity) exists in Kuber-
netes; if not, throw an error.

2. Check if the specified deployment (only V1Deployment at the time of writing,
without StatefulSet and other deployment types) exists in the namespace of the
participant; if not, throw an error.

3. Check and update (if needed) the referenced deployment such that it contains the
translator and the envoy proxy as a sidecar.

4. Check and update (if needed) the referenced service such that the correct port of
the proxy is used instead of the original one.

It is good practice33 that an Operator reconciliation loop does not differentiate if an
entity was just created or updated within Kubernetes. The reconciliation loop shall check
if the desired state still matches the actual state in the system. As such, if the entity
gets updated or the Operator is requested to reconcile a participant again by any means,
the current objects are checked if they are still valid. As a result, the reconciliation of
mesh participants is a complex process. The following two sections show a breakdown of
the reconciliation loop for mesh participants.

33According to Kubernetes and several operator SDKs like “KubeOps”
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Figure 29: Reconcile Mesh Participant - Deployment - Preparation

4.6.4.1 Reconcile the Target Deployment When the Operator is required to reconcile
a mesh participant, several preparation steps are taken. Figure 29 shows the first
few actions that reconcile the targeted deployment of a participant. If the referenced
deployment does not exist in the given namespace, an error is thrown. Further, if the
participant does not contain defined ports (for incoming, outgoing, transformer-incoming,
and transformer-outgoing communication), they are created and stored. Otherwise, the
ports are returned. The last step in preparation is fetching the DNS address for the
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PKI.

Figure 30: Reconcile Mesh Participant - Deployment - Translator Container

When the Operator finishes the preparation in Figure 29, the process in Figure 30 takes
place. The Kubernetes deployment is analyzed more thoroughly. The first check targets
the sidecar for the credential translator. If the container definition does not exist, it is
created and the environment variables and ports are configured. Then it is attached to
the deployment. If the container did exist, it is validated and checked that all required
values are as they should be. This step mitigates the risk that the manifest are edited
externally since the Operator will reset any changes to the sidecars.
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Figure 31: Reconcile Mesh Participant - Deployment - Envoy Configuration

The next step, as Figure 31 depicts, is validating the proxy (Envoy) configuration.
The config is stored in a V1ConfigMap in Kubernetes. The config object contains two
properties (“envoy-config.yaml” and “config-hash”) that contain the config and a
SHA256 hash of the config. If the config object does not exist, the config is created and
stored in the config object with the hash. If it does exist, the hash within the object
is checked against the config that should be stored. When the hash matches, nothing
happens. Otherwise, the generated config is stored along with its hash. After the config
is validated, the deployment is searched if the associated volume to bind the config as
files exists. If not, it is attached to the deployment.
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Figure 32: Reconcile Mesh Participant - Deployment - Envoy Container

Second to last step is checking the Envoy container. Figure 32 shows these steps. The
same technique that checks the translator container in Figure 30 ensures the existence
and correctness of the Envoy container. The container contains several environment
variables and open ports. Further, the container is injected into the deployment when it
does not exist.
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Figure 33: Reconcile Mesh Participant - Deployment - Proxy Environment Variable

Figure 33 shows the last step to reconcile the targeted deployment for a mesh
participant. All other containers in the deployment receive an environment vari-
able with the local HTTP proxy. The variable HTTP_PROXY contains the value
“http://localhost:{egressPort}”. Since multiple containers in a pod run on the same
“machine”, they share the same localhost. This enables the Distributed Authentication
Mesh to configure the application to use a local running Envoy instance as HTTP proxy.
Hence, the application routes its outgoing communication through Envoy which then in
turn can communicate with the credential translator.

4.6.4.2 Reconcile the Target Service In contrast to the target deployment reconcilia-
tion explained in the section above, the process to reconcile the targeted service is not as
complex.
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Figure 34: Reconcile Mesh Participant - Service

Figure 34 shows the steps to reconcile a target service for a mesh participant. If the
service does not exist, or it does not contain the target port that is specified in the
participant entity, an error is thrown. The target port for this “external service port” is
then changed to “ingress”. The referenced deployment contains this “ingress” reference
as external application port for incoming communication on the Envoy sidecar. As such,
all incoming communication on the target port is routed to Envoy. Thus, Envoy can
intercept the communication and can consult with the credential translator.
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5 Conclusions and Outlook

This project further improved the core concept of the “Distributed Authentication Mesh”
proposed in “Distributed Authentication Mesh” [1]. The goals of this project were
the definition and implementation of the “common language format” and a complete
implementation of in a cloud environment (i.e. “Kubernetes”).

Section 1 introduces the reader into the general topic of the project and shows references
to past work. Further, the past work is briefly analyzed and the goals for this project are
outlined.

Section 2 defines the scope of this project and introduces readers into the technologies
used by this project. Kubernetes, the central technology in this project, and some of the
required patterns, such as the Operator pattern and the Sidecar pattern, are explained.
Section 2 also gives an overview of the used security mechanisms in this project.

The next section, Section 3, describes the actual state of the “Distributed Authentication
Mesh”. The concept of the mesh only exists in a theoretical form and the only form of
proof that exists is a Proof of Concept (PoC). The PoC does show that it is possible to
change HTTP headers for HTTP requests in-flight but it does not show how this may be
used for the mesh. Also, the often referenced “common language format” is not defined
nor implemented.

The core of this project, the analyzation and implementation of the common language
and a practical implementation of the mesh, resides in Section 4. Since the concept of
the “Distributed Authentication Mesh” only uses the term “common language format”, a
useful implementation of the system was not possible.

Section 4 analyzes various data formats, such as structured formats (JSON, YAML,
etc.), x509 certificates, and JSON Web Tokens (JWT). Then, a comparison of the
formats shows the decision process for the JWT format. Structured formats would be
feasible for such a use-case, but they lack the possibility of validating the integrity of
the data without implementing further concepts. On the other hand, x509 certificates
provide such a mechanism and are already enabled though the existence of a Public
Key Infrastructure (PKI) in the authentication mesh. The storage of custom data is
possible withing certificates [13, Sec. 4]. However, they tend to be cumbersome to use
in various programming languages. Since one goal of the authentication mesh is a good
developer experience, x509 are not the most likely choice. JSON Web Tokens are selected
as common language format because of the ease-of-use and the possibility to sign them
with an algorithm [14]. The JSON Web Signature (JWS) [15] in conjunction with a JWT
enables data to be transmitted securely.

The reminder of Section 4 shows the definition and implementation of the PKI, a translator
base, an HTTP Basic translator, an OIDC translator, and the Kubernetes Operator
that automates the whole authentication mesh. All these sub-sections show (where
needed) use-case diagrams and process/sequence/invocation diagrams to explain the
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implementation further. All created software is available as open-source on GitHub under
the organization “WirePact” (https://github.com/WirePact). To test the authentication
mesh in Kubernetes, the GitHub organization provides a demo application that installs
the Operator and a simple application with “Keycloak” and Basic Auth. The code and
installation instruction can be found on GitHub (https://github.com/WirePact/k8s-
demo-application).

The goal for future work is to specify and implement the concept of a “Rule Engine”
to further improve the “Distributed Authentication Mesh”. To provide additional use
for the mesh, a rule based access engine could enhance the usefulness of the distributed
authentication mesh. Such a rule engine would further improve the security of the overall
system. This engine takes the configuration from the configuration store and takes place
before the translator checks the transmitted identity. A partial list of features could
be:

• Timed access: define times when the access to the service is rejected or explicitly
allowed.

• IP range: Define IP ranges that are allowed or blocked. This could prevent
cross-datacenter-access.

• Custom logic: With the power of a small scripting language34, custom logic could
be built to allow or reject access to services.

The rule engine should be extensible such that additional mechanisms can be included
into it. There are other useful filters that help development teams all over the world to
create more secure software.

In this project, the state-of-the-art of the concept and the implementation base on the
assumption that all participants reside in the same trust context. Extending the concepts
and the implementation of this project to enable the “Distributed Authentication Mesh”
to be truly “distributed”.

With the implementation of the authentication mesh, as documented in Section 4, the
system can be used in a Kubernetes cloud environment. This enables developers and
companies to use legacy applications in conjunction with modern state-of-the-art software
without changing one of the mentioned applications. The authentication mesh does
dynamically transform user information from the source system into a signed JWT and
back to the authentication scheme of the destination.

34For example Lua or JavaScript with their respective execution environment

55

https://github.com/WirePact
https://github.com/WirePact/k8s-demo-application
https://github.com/WirePact/k8s-demo-application
https://lua.org


Bibliography
[1] C. Bühler, “Distributed authentication mesh,” University of Applied Science of

Eastern Switzerland (OST), 2021. Available: https://buehler.github.io/mse-
project-thesis-1/report.pdf

[2] J. Humble and D. Farley, Continuous delivery: Reliable software releases through
build, test, and deployment automation. Pearson Education, 2010.

[3] B. Burns, J. Beda, and K. Hightower, Kubernetes. Dpunkt, 2018.

[4] B. Beyer, C. Jones, J. Petoff, and N. R. Murphy, Site reliability engineering: How
google runs production systems. " O’Reilly Media, Inc.", 2016.

[5] J. Dobies and J. Wood, Kubernetes operators: Automating the container orches-
tration platform. O’Reilly Media, Inc., 2020.

[6] prometheus-operator, “Prometheus operator docs.” Available: https://prometheus-
operator.dev/docs/

[7] B. Burns and D. Oppenheimer, “Design patterns for container-based distributed
systems,” Jun. 2016. Available: https://www.usenix.org/conference/hotcloud16
/workshop-program/presentation/burns

[8] J. Reschke, “The ’Basic’ HTTP authentication scheme,” Internet Engineering
Task Force IETF, RFC, 2015. Available: https://tools.ietf.org/html/rfc7617

[9] D. Hardt et al., “The OAuth 2.0 authorization framework,” Internet Engineering
Task Force IETF, RFC, 2012. Available: https://tools.ietf.org/html/rfc6749

[10] N. Sakimura, J. Bradley, M. Jones, B. De Medeiros, and C. Mortimore, “Openid
connect core 1.0,” The OpenID Foundation OIDF, Spec, 2014. Available: https:
//openid.net/specs/openid-connect-core-1_0.html

[11] I. Ahmed, T. Nahar, S. S. Urmi, and K. A. Taher, “Protection of sensitive data in
zero trust model,” 2020. doi: 10.1145/3377049.3377114.

[12] T. Santos and C. Serrão, “Secure javascript object notation (SecJSON) enabling
granular confidentiality and integrity of JSON documents,” in 2016 11th interna-
tional conference for internet technology and secured transactions (ICITST), 2016,
pp. 329–334. doi: 10.1109/ICITST.2016.7856724.

[13] D. Cooper, S. Boeyen, S. Santesson, T. Polk, R. Housley, and S. Farrell, “Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile,” Internet Engineering Task Force IETF, RFC 5280, May 2008. doi:
10.17487/RFC5280.

[14] M. B. Jones, Bradley John, and N. Sakimura, “JSON web token (JWT),” Internet
Engineering Task Force IETF, RFC, May 2015. Available: https://tools.ietf.org
/html/rfc7519

56

https://buehler.github.io/mse-project-thesis-1/report.pdf
https://buehler.github.io/mse-project-thesis-1/report.pdf
https://prometheus-operator.dev/docs/
https://prometheus-operator.dev/docs/
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/burns
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/burns
https://tools.ietf.org/html/rfc7617
https://tools.ietf.org/html/rfc6749
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://doi.org/10.1145/3377049.3377114
https://doi.org/10.1109/ICITST.2016.7856724
https://doi.org/10.17487/RFC5280
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519


[15] M. B. Jones, Bradley John, and N. Sakimura, “JSON web signature (JWS),”
Internet Engineering Task Force IETF, RFC, May 2015. Available: https://tools.
ietf.org/html/rfc7515

57

https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515

	Declaration of Authorship
	Introduction
	Definitions and Clarification of the Scope
	Scope of the Project
	Kubernetes and its Patterns
	Terminology of Kubernetes
	Kubernetes, the Orchestrator of Software
	An Operator, the Reliability Engineer
	A Sidecar, the Extension to a Pod

	Securing Communication
	HTTP Basic Authentication
	OpenID Connect
	Trust Zones and Zero Trust


	State of the Authentication Mesh
	Implementing a Common Language and a Mesh Operator
	Goals and Non-Goals of the Project
	A Way to Communicate with Integrity
	YAML, XML, JSON, and Others
	X509 Certificates
	JSON Web Tokens
	Using JWT in the Authentication Mesh

	A Public Key Infrastructure as Trust Anchor
	“Gin”, a Go HTTP Framework
	Prepare the CA
	Deliver the CA
	Process Certificate Signing Requests (CSR)
	Authentication and Authorization against the PKI

	Provide a Translator Base
	Define the Common Identity
	Startup a Translator
	Provide Endpoints for Interception
	Encode the JWT
	Decode the JWT

	Implementing an HTTP Basic Translator with a Secure Common Identity
	Validate and Encode Outgoing Credentials
	Validate and Decode an Incoming Identity
	Contrast to an OIDC Translator

	Automate the Authentication Mesh
	Use-Cases for the Operator
	Custom Entities for Kubernetes
	Managing the Public Key Infrastructure
	Reconciling Authentication Mesh Participants


	Conclusions and Outlook
	Bibliography

