
Distributed Authentication Mesh∗

A Concept for Declarative Ad Hoc Conversion of Credentials

Christoph Bühler

Spring Semester 2021
University of Applied Science of Eastern Switzerland (OST)

As more and more applications run in containerized cloud environments,
securing their architectures against attackers is an important concern. Ap-
plications defend themselves against intrusion with various authentication
mechanisms such as OpenID Connect. However, legacy applications that are
not updated nor rewritten tend not to support modern security standards.
Enabling applications to communicate with legacy (or third-party) software
often requires to introduce code changes to the modern apps.

To eliminate leaking credentials (such as access tokens) and to reduce the
risk of bugs, this project targets the dynamic conversion of a user identity.
This identity is used to authenticate the user instead of the original credentials.
This project provides the conceptional idea and the architecture, as well as
a platform specific example of such a solution. A Proof of Concept answers
relevant questions for the realization of such a framework. The evaluation
then shows that the proposed solution is as secure as the current state of the
art and validates the architecture against the goals. The conclusion provides
information about the project, possible use cases, and the goals of follow-up
projects.

∗I would like to express my appreciation to Dr. Olaf Zimmermann for guiding and reviewing this work.
Furthermore, special thanks to Florian Forster, who provided the initial inspiration and challenged
the results of this project from a practical perspective.

1

Contents

Declaration of Authorship 5

1 Introduction 6

2 Definitions and Clarification of the Scope 7
2.1 Scope of the Project . 7
2.2 Kubernetes as an Orchestration Engine 8

2.2.1 Introduction . 8
2.2.2 Terminology . 10

2.3 The Operator Pattern . 11
2.4 The Sidecar Pattern . 13
2.5 Controlling the Data with a Service Mesh 14
2.6 Authentication, Authorization, and Security 15

2.6.1 Basic Authentication (RFC7617) 15
2.6.2 OpenID Connect (OIDC) . 15
2.6.3 Zero Trust Environment . 17

3 State of the Art and the Practice 18
3.1 Accessing Legacy Systems from Cloud-Native Applications 18
3.2 External Authentication and Identity Transport 20
3.3 Missing Dynamic Credential Transformation 21

4 Distributed Authentication Mesh 24
4.1 Definition . 24
4.2 Goals and Non-Goals of the Project . 24
4.3 Differentiation from Security Assertion Markup Language 26
4.4 Architecture of the Distributed Authentication Mesh 26

4.4.1 Federated Identity with Diverging Authentication Schemes 27
4.4.2 Conceptional Architecture . 27
4.4.3 Platform-Specific Example in Kubernetes 29

4.5 Securing the Communication between Applications 40
4.6 Implementation Proof of Concept (PoC) 40

4.6.1 Case Study for the PoC . 42
4.6.2 Automation Engine for Applications 44
4.6.3 Network and Routing Proxy for Communication 45
4.6.4 Translator . 46

5 Evaluation 49
5.1 Architecture against Requirements . 49

5.1.1 NFR 1: Improve Security . 49
5.1.2 NFR 2: Secure implementation . 49
5.1.3 NFR 3: Generic Usage . 50

2

5.1.4 NFR 4: Performance Impact . 51
5.1.5 NFR 5: Modularity . 51
5.1.6 NFR 6: Integration into Infrastructure 51
5.1.7 NFR 7: Scalability . 52
5.1.8 NFR 8: Separation of Concerns . 52
5.1.9 NFR 9: No Data-Transfer . 52
5.1.10 NFR 10: Error Handling . 52

5.2 Leaking Credentials and Developer Experience 53

6 Conclusions and Outlook 55

Bibliography 57

Appendix A: Common Kubernetes Terminology 59

Appendix B: Installation of the PoC 61

Appendix C: Teaching Material for Kubernetes Operators 62
Motivation . 62
Learning Objectives . 62
Kubernetes Operators and their Use . 62

What is an Operator? . 62
How do Operators work? . 64
What is an Operator SDK? . 66

Exercise: Create a Custom Operator with an SDK 67
TL;DR . 67
Create and Run an empty Operator . 67
Create the Custom Resource Definition 69
Reconcile the Custom Resource . 70

List of Tables

1 Key Kubernetes Terminology . 10
2 Functional Requirements . 24
3 Non-Functional Requirements . 25
A.1 Common Kubernetes Terminology . 59

List of Figures

1 Illustration of the problem with diverging authentication mechanisms . . . 7
2 Kubernetes Container Evolution . 9
3 UML of Kubernetes Resources (partially) 11

3

4 Kubernetes Operator Workflow . 12
5 Example of a Sidecar Container . 13
6 OpenID Connect Code Flow . 16
7 Microservice Architecture with Legacy Components 19
8 Current Process of Legacy Communication 20
9 Service Landscape with various authentication mechanism 22
10 Abstract Solution Architecture . 28
11 Automation with an Operator in a Kubernetes Environment 30
12 Determination of the Relevance of a Deployment or a Service 31
13 Automated Enhancement of a Deployment and a Service 32
14 The Relation of the Public Key Infrastructure and the System 33
15 Provide Key Material to the Translator 34
16 Checking the Signature of the transmitted Identity 35
17 Networking with an Proxy . 36
18 Outbound Networking Sequence . 36
19 Inbound Accepted Networking Sequence 37
20 Inbound Rejected Networking Sequence 38
21 Translator Process . 39
22 Component Diagram of the Case Study 42
23 Sequence Diagram of the Communication in the Case Study 43
24 Activity Model for Kubernetes Resources in the Automation Engine . . . 44
25 Communication with an Invalid Access Token 47
26 Communication with a Valid Access Token 48
C.1 Kubernetes Operator Reconciliation Loop 63
C.2 Kubernetes Operator Pattern . 63
C.3 Parts of an Operator and their Interaction with Kubernetes 64
C.4 Kubernetes Operator Workflow . 66

4

Declaration of Authorship

I, Christoph Bühler, declare that this project report titled, “Distributed Authentication
Mesh” and the work presented in it are my own.

I confirm that:

• Where I have consulted the published work of others, this is always clearly at-
tributed.

• Where I have quoted from the work of others, the source is always given. Except
for such quotations, this project report is entirely my own work.

• I have acknowledged all main sources of help.
• Where the project report is based on work done by myself jointly with others, I

have made clear exactly what was done by others and what I have contributed
myself.

Gossau SG, August 31, 2021

Christoph Bühler

5

1 Introduction

Cloud environments like Kubernetes solve many problems such as the discovery of services
and data transfer or communication between services and applications in general. As the
development of cloud-native applications (CNA) evolves, older applications move to the
cloud as well.

However, a specific problem is not yet solved: “dynamic” trusted communication between
services. For example, a service with the capability of handling OpenID Connect (OIDC)
credentials wants to communicate with a service that only knows Basic Authentication.
The OIDC-capable service must implement some conversion mechanism or know static
Basic Auth credentials to communicate with the basic auth service. In general, this
introduces changes to the software. In small applications that consist of one or two
services, implementing this conversion may be a feasible option. But if we look at an
application that spans over a big landscape and a multitude of services, implementing
every used authentication mechanism will be error-prone work and does not scale well1.
In practice, we encountered the given scenario at various points in time when older
applications were migrated into a cloud environment and newer applications were built
around it. In almost all cases, the modern software was changed to communicate with
the legacy systems, instead of modifying the legacy application.

The goal of the project “Distributed Authentication Mesh” is a concept and an architecture
for a solution to the problem of dynamic credential conversion. By introducing multiple
elements, such as a translator in conjunction with a proxy that is capable of modifying
HTTP headers in-flight, the described problem can be solved. The proposed concept
makes use of a common domain language to transfer the authenticated identity of a user
between services of an application. The proxy intercepts the requests and instructs the
translator to transform the common language into the valid authentication format of the
destination.

The remainder of the report describes used technologies, terminology, and concepts.
Furthermore, the state of the art gives an overview of the current situation and the
present solutions in practice. With the description of the distributed authentication mesh,
the report shows the conceptual idea and the architecture as well as a platform-specific
example in Kubernetes. The feasibility of the concept is tested with the implementation
of a Proof of Concept (PoC) on Kubernetes. The evaluation, following the description of
the solution, validates if the goals and non-goals of the solution are met. The conclusion
gives an overview of the work and a summary of the project.

For the understanding of the report, basic knowledge about Docker, Kubernetes, microser-
vices and security is required. The implementation of the PoC is based on Kubernetes to
display the concepts of the solution practically. In terms of authentication and authoriza-
tion, the PoC uses OpenID Connect and Basic Authentication, which are both described
in later sections.

1According to the matrix problem: X services ∗ Y authentication methods

6

2 Definitions and Clarification of the Scope

This section provides general information about the project, the context, and prerequisite
knowledge. It gives an overview of the context as well as terminology and general
definitions.

2.1 Scope of the Project

This project addresses the specific problem of declarative conversion of user credentials,
for example an access token, to ensure authorized communication between services. When
multiple services with different authentication mechanisms communicate with each other,
the services need to translate the credentials and send them to their counterpart. The
goal of this project is to prevent user credentials from being transmitted to other services
and to remove the need for code changes to transform credentials to another format.

Figure 1: Illustration of the problem with diverging authentication mechanisms

Figure 1 shows an example where an automatic and dynamic translation of access
credentials would be useful. Service A needs to translate the received OIDC access token
to some information encoded in Basic Authentication to access Service B.

To solve the problem, an automation component enhances services that are part of the
application with additional functionality. A proxy in front of the service captures in-, and
outgoing traffic to modify the Authorization HTTP header. Additionally, a translator
transforms the original authentication data into a form of identity and encodes it with a
common language format. The receiving service can validate this encoded identity and
transforms the identity into valid user credentials again. This automatic transformation
of credentials (e.g. from OIDC to Basic Auth) replaces manual work which may introduce
code changes to either service. The deliverables of this and further projects may aid

7

applications or APIs to communicate with each other despite different authentication
mechanisms.

The solution may be feasible for various platforms but to provide a practical demo
application, the Proof of Concept (PoC) runs on Kubernetes. Kubernetes2 is an or-
chestration platform that works with containerized applications. The PoC resides in an
initial version in an open-source GitHub repository. The PoC demonstrates that it is
possible to instruct an Envoy3 proxy to communicate with an injected service to modify
authentication credentials in-flight. To separate the proposed solution from more complex
concepts like a service mesh, the PoC can run without a service mesh on a Kubernetes
cluster and uses the built-in service discovery of Kubernetes to communicate.

2.2 Kubernetes as an Orchestration Engine

This section provides a general overview of Kubernetes. Kubernetes is a prominent
orchestration engine that manages workloads on worker-nodes. In this project, Kubernetes
is used as platform for the specific implementation example in the PoC. The solution does
not require Kubernetes or any other cloud environment platform but certain features, like
automation with operators, support the solution. It is possible to use other environments,
such as Docker Swarm or a native implementation on an operating system, to run the
proposed solution.

2.2.1 Introduction

Kubernetes is an open-source platform that manages containerized workloads and ap-
plications. Workloads may be accessed via “Services” that use a DNS naming system.
Kubernetes uses declarative definitions to compare the actual state of the system with
the expected state [1].

2https://kubernetes.io/
3https://www.envoyproxy.io/

8

https://kubernetes.io/
https://www.envoyproxy.io/

Figure 2: Container and Deployment Evolution. Description of the evolution of deploy-
ments as found on the documentation website of Kubernetes [1]. This image is
licensed under the CC BY 4.0 license [2].

According to Kubernetes, the way of deploying applications has evolved. As shown in
Figure 2, the “Traditional Era” was the time when applications were deployed via FTP
access and started manually (e.g. on an Apache web server). Then the revolution to
virtual machines came and technologies that could virtualize a whole operating system,
such as VMWare, were born. The latest stage, “Container Era,” defines a new way
deploying workloads by virtualizing processes instead of operating systems and therefore
better use the given resources [1].

Kubernetes is a major player among others like “OpenShift” or “Cloud Foundry” in
“Container Deployment” as seen in Figure 2 and supports teams with the following
features according to the documentation [1]:

• Service discovery and load balancing: Use DNS names or IP addresses to
route traffic to a container and if the traffic is high and multiple instances are
available, Kubernetes does load balance the traffic

• Storage orchestration: Automatically provide storage in the form of mountable
volumes

• Automated rollouts and rollbacks: When a new desired state is provided
Kubernetes tries to achieve the state at a controlled rate and has the possibility of
performing rollbacks

• Automatic bin packing: Kubernetes only needs to know how much CPU and
RAM a workload needs and then takes care of placing the workload on a fitting
node in the cluster

• Self-healing: If workloads are failing, Kubernetes tries to restart the applications
and even kills services that do not respond to the configured health checks

• Secret and configuration management: Kubernetes has a store for sensitive
data as well as configuration data that may change the behavior of a workload

9

The list of features is not complete. There are many concepts in Kubernetes that help to
build complex deployment scenarios and enable teams to ship their applications in an
agile manner.

Kubernetes works with containerized applications. In contrast to “plain” Docker, it
orchestrates the applications and is responsible for the desired state depicted in the
application manifest files. Examples of such deployments and other Kubernetes objects
are available online in the documentation [1]4.

2.2.2 Terminology

In Table 1, we state the key terms for Kubernetes. A more complete list can be found in
Appendix A in Table A.1.

Table 1: Key Kubernetes Terminology
Term Description
Container The smallest possible unit in a deployment. Contains the

definition of the workload. A Pod contains one or more
containers.

Pod Composed of multiple containers. Pod are the smalles
deployable units in Kubernetes.

Service A service enables (network) communication with one multiple
pods.

CRD A Custom Resource Definition (CRD) enables developers to
extend the default Kubernetes API.

Operator An operator is a software that manages Kubernetes resources
and their lifecycle. Operators may use CRDs to define custom
objects on which they react when some event (Added, Modified
or Deleted) triggers on a resource. For a more in-depth
description, see Section 2.3.

4https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#creating-a-deployment

10

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#creating-a-deployment

Figure 3: UML of Kubernetes Resources (partially)

Figure 3 shows a partial part of Kubernetes objects. An operator can manage resources
such as deployments or services. The operator may manage other resources or custom
resources based on the configuration it uses. A deployment contains a pod, which contains
containers. The container is the effective unit of work, defined by an image. The service
allows communication with a specific container on a configured port.

2.3 The Operator Pattern

An Operator can be seen as a software for Site Reliability Engineering (SRE). SRE
is a set of patterns and principles that originated at Google to manage and run large
applications and systems. An Operator can automatically manage a cluster of database
servers or other complex applications that would require expert knowledge [3]. The term
“Operator” may come from the fact, that it replaces an expert, for example a database
admin, that would operate and manage the application manually.

An Operator in Kubernetes is an extension to the Kubernetes control plane and API
itself. A custom Operator typically manages the whole lifecycle of an application it
manages [3]. An Operator can further be used to reconcile normal Kubernetes resources
or any combination thereof.

Some examples of application operators are:

• Prometheus Operator5: Manages instances of Prometheus (open-source monitoring
and alerting toolkit) in a cluster

5https://github.com/prometheus-operator/prometheus-operator

11

https://github.com/prometheus-operator/prometheus-operator

• Postgres Operator6: Manages PostgreSQL clusters inside Kubernetes, with the
support of multiple instance database clusters

There exists a broad list of operators, which can be (partially) viewed on
https://operatorhub.io.

Figure 4: Kubernetes Operator Workflow

In Figure 4, we depict the general workflow of an event that is managed by an operator.
When an operator is installed and runs on a Kubernetes cluster, it registers “Resource
Watchers” with the API and receives notifications if the master node modifies resources.
The overviewed events are “Added,” “Modified” and “Deleted.” There are two additional
events that may be returned by the API (“Error” and “Bookmark”), but they are typically
not needed for reconciliation.

When the user interacts with the Kubernetes API (e.g. via the kubectl executable) and
creates a new instance of a resource, the API will first call any “Mutator” in a serial
manner. After the mutators, the API will call any “Validators” in parallel and if no
validator objects against the creation, the API will then store the resource and tries to
apply the transition for the new desired state. Now, the operator receives a notification
about the watched resource and may interact with the event. Such action may include
updating resources, create more resources or even delete other instances.

6https://github.com/zalando/postgres-operator

12

https://operatorhub.io/
https://github.com/zalando/postgres-operator

A theoretical example of the concept is an Operator that creates database users based
on a custom resource definition. When a user creates a custom resource with a username
and a password, the Operator reacts to the creation and calls for validators to check if
the username is set and the password is set. If the validation passes, the mutator may
change the username according to some rules (e.g. no uppercase letters) and then the
API stores the custom resource. After the resource is stored, the Operator gets notified
about the effective “creation” and can reconcile the resource accordingly.

2.4 The Sidecar Pattern

According to Brendan Burns and David Oppenheimer, the sidecar pattern is the most
common pattern for multi-container deployments [4]. Sidecars are containers that enhance
the functionality of the main container in a pod. An example for such a sidecar is a log
collector, that fetches log files written to the file system and forwards them towards some
log processing software [4]. Another example is the Google CloudSQL Proxy7, which
provides access to a CloudSQL instance from a pod without routing the whole traffic
through Kubernetes services.

Figure 5: Sidecar container extending a main container in a pod. As example, this could
be a log collector [4]. Both containers in the Pod share the same filesystem
and can access files in the Pod. The Application writes logs into files and the
Sidecar sends the logfiles into an S3 bucket.

The example shown in Figure 5 is extensible. Common use cases for sidecars include
controlling the data flow in a cluster with a service mesh8, providing access to secure
locations9 or performing additional tasks such as collecting logs of an application. Since
sidecars are tightly coupled to the original application, they scale with the pod. It is not

7https://github.com/GoogleCloudPlatform/cloudsql-proxy
8As done by Istio (https://istio.io/latest/docs/reference/config/networking/sidecar/)
9Like the Google CloudSQL Proxy

13

https://github.com/GoogleCloudPlatform/cloudsql-proxy
https://istio.io/latest/docs/reference/config/networking/sidecar/

possible to scale a sidecar without scaling the pod — and therefore the application —
itself.

2.5 Controlling the Data with a Service Mesh

A “Service Mesh” is a dedicated infrastructure layer that handles intercommunication
between services. It is responsible for the delivery of requests in a modern cloud application
[5]. An example is “Istio”10. When using Istio, the applications do not need to know if
there is a service mesh installed or not. Istio will inject a sidecar (see Section 2.4) into
the deployments to handle the communication between services.

The service mesh provides a set of features [5]:

• Service discovery: The mechanism to locate and communicate with a workload /
service. In a cloud environment, the location of services will likely change, thus,
the service mesh provides a way to access the services in the cloud.

• Load balancing: As an addition to the service discovery, the mesh provides load
balancing mechanisms as is done by Kubernetes itself.

• Fault tolerance: The router in a service mesh is responsible to route traffic to
healthy services. If a service is unavailable or even reports a crash, traffic should
not be routed to this instance.

• Traffic monitoring: In contrast to the default Kubernetes possibilities, with a
service mesh, the traffic from and to various services can be monitored in detail.
This offers the opportunity to derive reports per target, success rates and other
metrics.

• Circuit breaking: The ability to cut off an overloaded service and back off the
remaining requests instead of totally failing the service under stress. A circuit
breaker pattern measures the failure rate of a service and applies states to the
service: “Closed” — requests are passed to the service, “Open” — requests are not
passed to this instance, “Half-Open” — only a limited number is passed [6].

• Authentication and access control: Through the control plane, a service mesh
may define the rules of communication. It defines which services can communicate
with one another.

As observed in the list above, many of the features of a service mesh are already provided
by Kubernetes. Service discovery, load balancing, fault tolerance and — though limited
— traffic monitoring is already possible with Kubernetes. Introducing a service mesh into
a cluster enables administrators to build more complex scenarios and deployments.

10https://istio.io/

14

https://istio.io/

2.6 Authentication, Authorization, and Security

This section provides an introduction to the used authentication mechanisms. The
proposed solution is capable of handling more than the described schemes, but for the
implementation of the PoC, Basic Authentication and OIDC were used.

2.6.1 Basic Authentication (RFC7617)

The Basic authentication is a trivial authentication scheme (i.e. a way to prove the
identity of an entity) that accepts a username and a password encoded in Base64. To
transmit the credentials, the username and the password are concatenated with a colon
(:) and then encoded with Base64. The result is inserted into the HTTP request as the
Authorization header with the prefix Basic [7].

2.6.2 OpenID Connect (OIDC)

OpenID Connect is not defined in an RFC. The specification is provided by the OpenID
Foundation (OIDF). OIDC extends OAuth, which is defined by RFC6749.

OpenID Connect is an authentication scheme, that extends/complements the OAuth 2.0
framework. OAuth itself is an authorization framework, that enables applications to
gain access to a resource (API or other) [8]. OAuth 2.0 only deals with authorization
and grants access to data and features on a specific application. The OAuth framework
by itself does not define how the credentials are transmitted and exchanged [8]. OIDC
adds additional logic to OAuth 2.0 that defines how these credentials must be exchanged.
Thus, OIDC enables login and profile capabilities in any application that uses OIDC
[9].

15

Figure 6: OIDC code authorization flow [9]. Only contains the credential flow, without
the explicit OAuth part. OAuth handles the authorization whereas OIDC
handles the authentication.

When a user wants to authenticate himself with OIDC, one of the possible “flows” is
the “Authorization Code Flow.” Other possible flows are the “Implicit Flow” and the
“Hybrid Flow” [9]. Figure 6 depicts the “Authorization Code Flow.” A user that wants
to access a certain resource (e.g. an API) on a relying party (i.e. something that relies
on the information about the user) and is not authenticated and authorized, the relying
party forwards the user to the identity provider (IdP). The user provides his credentials
to the IdP and is returned to the relying party with an authorization code. The relying
party can then exchange the authorization code for valid tokens on the token endpoint
of the IdP. Typically, access_token and id_token are provided. While the id_token
must be a JSON Web Token (JWT), the access_token can be in any format [9].

An example of an id_token in JWT format may be:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
yJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.
flKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c

The stated JWT token contains:

16

{
"alg": "HS256",
"typ": "JWT"

}
{

"sub": "1234567890",
"name": "John Doe",
"iat": 1516239022

}

Such JWT tokens contain information as well as a hash to secure integrity of the data.
The mechanism of JWT tokens could be used to implement the “common language
format” for the solution. It provides a mechanism to transmit data and protects the data
against modification with a hash.

2.6.3 Zero Trust Environment

“Zero Trust” is a security model with a focus on protecting data and user credentials. The
basic idea of zero trust is to assume that an attacker is always present. It does not matter
if the application resides within an enterprise network, zero trust assumes that enterprise
networks are no more trustworthy than any other public network. As a consequence of
zero trust, applications are not implicitly trusted. Therefore, user credentials must be
presented and validated for each access to a resource [10]. Zero trust can be summarized
with: “Never trust, always verify.”

17

3 State of the Art and the Practice

This section gives an overview of the current state of the art and the practice. Furthermore,
it states the deficiencies that this project tries to solve.

3.1 Accessing Legacy Systems from Cloud-Native Applications

In cloud environments, a solved problem is the transmission of arbitrary data from one
endpoint to another. Several programming languages (like .NET, Python and Node.js)
provide ways to handle communication with other endpoints and APIs. To transmit data
between services in a cloud environment, an application can use the HTTP protocol,
gRPC11, or any other protocol to encode the requests and responses. In the case of a
service mesh, a sidecar is injected into the pod that contains a proxy to handle data
transmission between the services.

In terms of authentication and authorization, there is a variety of schemes that enable
an application to authenticate and authorize its users. OpenID Connect (OIDC) is
a state-of-the-art authentication scheme, that complements the OAuth 2.0 framework,
which in turn handles authorization [9]. OAuth only defines how to grant access to specific
resources (like APIs) but not how the access tokens are exchanged. OIDC fills that space
by introducing authentication flows (e.g. “Authorization Code Flow” in Figure 6). OAuth
in combination with OIDC provides a modern and secure way of authentication and
authorizing users against an API.

Software architectures that are specifically designed for the cloud are called “Cloud Native
Applications” (CNA). A CNA can be defined as [11]:

“A cloud-native application is a distributed, elastic and horizontal scalable
system composed of (micro)services which isolates state in a minimum of
stateful components. The application and each self-contained deployment
unit of that application is designed according to cloud-focused design patterns
and operated on a self-service elastic platform.”

However, with CNAs and the general movement to cloud environments and digitalization,
not all applications get that chance to adjust. For various reasons like budget, time or
technical risks and skill availability, legacy applications and monoliths are not always
refactored or re-written before they are deployed into a cloud environment. Michael
Feathers wrote an impressive book on how to work with legacy code. With the guidance
of the book, it may be possible for some applications to be modernized [12].

If legacy applications (for example an old enterprise resource planning system) are
mixed with CNAs, then the need of “translation” arises. Assuming that the CNA is a
secure application that uses OIDC to authenticate its users and the application needs

11https://grpc.io/

18

https://grpc.io/

to fetch data from a legacy system. The legacy application does not understand OIDC,
thus, either the modern or the legacy application must receive code changes (i.e. enable
the application to convert the user credentials to the scheme of the target service) to
enable communication between the services. Following the previous assumption, the code
changes will likely be introduced into the CNA, since it is presumably better maintainable
and deployable than the legacy app. Hence, the modern application receives changes that
may introduce new bugs or vulnerabilities. If new code is introduced into an application,
“normal” software bugs may be created and external dependencies (such as libraries
for authentication and authorization) may import vulnerabilities caused by bugs or by
deviation from standards.

Figure 7: Microservice architecture that contains modern applications as well as legacy
services.

We consider the components in Figure 7:

• User: A person with access to the application
• Single Page Application: A modern single page application (SPA)
• Identity and Access Management (IAM): Identity Provider for the solution

(does not necessarily reside in the same cloud)
• Cloud Native Application (CNA): A state-of-the-art API application and

primary access point for the client
• Legacy System: Legacy service that is called by the CNA to fetch some additional

data

In practice, we encountered the stated scenario at various points in time. Legacy services
may not be the primary use case. Another example is the usage of third-party applications
without any access to the source code.

19

Figure 8: Current state of the art of accessing legacy systems from modern services with
differing authentication schemes.

The invocation sequence in Figure 8 shows the process of communication in such a
scenario. In Figure 8, the SPA (Client) authenticates against an arbitrary IAM. The
CNA is the modern backend that supports the SPA as a backend API. Therefore, the
CNA provides functionality for the SPA. The legacy application, for example an old ERP
with order information, was moved into the cloud, but is not refactored nor re-written to
communicate with modern authentication technologies.

In this scenario, the SPA calls some API on the CNA that — in turn — will call the
legacy system to get additional information to present to the user. Since the SPA and the
CNA communicate with the same authentication technology, the call is straightforward.
The SPA authenticates itself and obtains an access token. When calling the service (the
CNA), the token is transmitted and the service can check with the IAM if the user is
authorized to access the system. When the CNA calls the legacy system for additional
information, it is required to translate the user-provided credentials (the access token)
to a format that the legacy system understands. In the example, the legacy system is
only able to handle Basic Authentication (RFC7617). This means, if the CNA wants
to communicate with the legacy system, it must implement some translation logic to
change the user credentials into the typical Basic Authentication Base64 encoded format
of <Username>:<Password>. Hence, code changes are introduced to the CNA since the
legacy system is not likely to be easily maintainable.

3.2 External Authentication and Identity Transport

In practice, no current solution exists that allows credentials to be transformed between
authentication schemes. The service mesh “Istio” provides a mechanism to secure services

20

that communicate with mTLS (mutual TLS) [13] as well as an external mechanism to
provide custom authentication and authorization capabilities [14]. The concept of Istio
works well when all applications in the system share the same authentication scheme. As
soon as two or more schemes are in place, the need for transformation arises again.

In fact, the external authentication feature of Istio is based on Envoy. Istio uses Envoy as
an injected sidecar. Another prominent API gateway, “NGINX”12, implements a similar
external authentication mechanism [15]. However, Envoy implements a more fine-grained
control over the HTTP request. As an external authentication service for Envoy, the
result may change HTTP headers in the request and the response. While both gateways
offer a way of external authentication and authorization, they cannot transform the user
credentials on their own. In Envoy, the external service may attach or modify HTTP
headers, while in NGINX, the external service may only allow or reject a request.

There exist techniques, such as SAML (Security Assertion Markup Language) or JWT
(JSON web token) profiles, to transmit an identity of a user to other services. However,
SAML only describes the format of the identity itself, not the translation between varying
types of credentials. SAML works when all participating services understand SAML as
well. If a legacy system is not able to parse and understand SAML, the same problem
arises.

All the discussed technologies and applications above do not support the dynamic
conversion of user credentials. While Istio solves the communication and enables mTLS
between services, it does not translate credentials between services. SAML gives a
common format for an identity of a user, but it is an authentication scheme on its own.
Thus, the “translation problem” still persists.

3.3 Missing Dynamic Credential Transformation

The situation described in the previous sections introduces several problems. It does not
matter whether the legacy system is a third-party application to which no code changes
can be applied to, or if it is an application that cannot be updated for the time being.
Most likely, the code change to provide the ability to communicate will be introduced
into the CNA. This adds the risk of errors since new code must be produced, which
would not be necessary if the legacy service was refactored. Also, changing the CNA to
communicate with the legacy software may be a feasible solution in a small setup. But
as the landscape of the application grows, this solution does not scale well.

12https://www.nginx.com/

21

https://www.nginx.com/

Figure 9: Service Landscape with various authentication mechanism

The problem, as depicted in Figure 9, shows that the number of conversion mechanisms
increases with each service and each authentication method. As the landscape and the
different methods of authentication grow, it is not a feasible solution to implement every
authentication scheme in all the callers. In Figure 9, “Caller 1” is required to transform
the user credentials into four different formats to communicate with services one to four.
When another caller enters the landscape, it must implement the same four mechanisms
as well.

Another issue that emerges with this transformation of credentials: The credentials leak
into the trust zone. As long as each service is in the same trust zone (for example, in the
same data center in the same cluster behind the same API gateway), this may not be
problematic. As soon as the communication is between data centers, the communication
and the credentials must be protected. It is not possible to create a zero trust (the
assumption, that an attacker is always present) environment with the need of knowledge
about the target’s authentication schemes.

Service meshes may provide a way to secure communication between services, but they
are not able to transform credentials to a required format for any legacy application
yet. It would be a possible solution to enable service meshes to transform credentials.
However, service meshes introduce another layer of complexity on top of the environment.
Such a system should be easy to use.

Other technologies — such as credential vaults — have a similar problem. The vault is
the central weakness in the system. If the vault is attacked, the whole trust zone may fail.
While a credential vault would provide a way to share credentials between services, it does
not mitigate the need of transformation. A vault, like “Vault by HashiCorp”13, typically

13https://www.vaultproject.io/

22

https://www.vaultproject.io/

provides a secure way to inject credentials into a system. The vaults do not transform
credentials for the destination. However, such a vault could be used as secure storage of
credentials for such a system that enables the described transformation. In the example
of Figure 8, the secure vault could be used to store the static Basic Authentication
credentials for the legacy service. The transformer can then access the vault to fetch the
needed credentials for the target system.

23

4 Distributed Authentication Mesh

This section gives an overview and an in-depth documentation of the proposed solution.
Furthermore, boundaries of the solution are provided along with common software
engineering elements like requirements, non-functional requirements, an abstract and a
conceptional architecture.

The proposed architecture provides a generic description for a solution to the described
problem. For this project, a Proof of Concept (PoC) gives insights into the topic of
manipulating HTTP requests in-flight. The PoC is implemented to run on a Kubernetes
cluster to provide a practical example.

4.1 Definition

A solution for the stated problems in Section 3 must be stateless and able to transform
arbitrary credentials into a format that the target service understands. For this purpose,
the architecture contains a service that runs as a sidecar among the target service. This
sidecar intercepts requests to the target and transforms the Authorization HTTP header.
The sidecar is used to intercept inbound and outbound traffic.

However, the solution must not interfere with the data flow itself. The problem of
proxying data from point A to B is well solved. In the given work, an Envoy proxy
delivers data between the services. Envoy allows the usage of an external service to
modify requests in-flight.

4.2 Goals and Non-Goals of the Project

This section presents the functional and non-functional requirements and goals for the
solution. It is important to note that the implemented Proof of Concept (PoC) will
not achieve all goals. Further work is needed to implement a solution according to the
architecture that adheres to the stated requirements.

In Table 2, we present the list of functional requirements or goals (REQ) for the proposed
solution and the project in general.

Table 2: Functional Requirements
Name Description
REQ 1 The translator module must be able to transform given credentials

into the specified common language and the common format back
into valid credentials.

REQ 2 The translator handles errors if they occur. When an unrecoverable
error happens, the request is rejected.

24

Name Description
REQ 3 A proxy is deployed to intercept communication with the service in

question to handle the data flow.
REQ 4 Translators do only modify HTTP headers. They must not interfere

with the data that is transmitted.
REQ 5 The automation engine decides which elements are relevant for the

authentication mesh.
REQ 6 The automation engine — if it exists — enhances objects with the

proxy and translator engine.

In Table 3, we show the non-functional requirements or non-goals (NFR) for the proposed
solution.

Table 3: Non-Functional Requirements
Name Description
NFR 1 First and foremost, the solution must not be less secure than current

solutions.
NFR 2 The solution must adhere to current best practices and security

mechanisms. Furthermore, it must be implemented according to the
standards of the practice to mitigate security issues as stated in the
OWASP Top Ten (https://owasp.org/www-project-top-ten).

NFR 3 The concept of the solution is applicable to cluster orchestration
software other than Kubernetes. The architecture provides a general
way of solving the stated problem instead of giving a proprietary
solution for one vendor. The concept should even be realizable for
non-orchestration platforms like a Windows operating system.

NFR 4 The translation of the credentials should not extensively impact the
timeframe of an arbitrary request. In production mode, the additional
time to check and transform the credentials should not exceed 100ms.
This is a general recommendation and some authentication mechanism
may exceed the stated 100ms.

NFR 5 The solution must be extensible with additional “translators” that
provide the means of transforming the given credentials to other target
formats.

NFR 6 The solution may run with or without a service mesh. It is a goal that
the solution can run without a service mesh to reduce the overall
complexity, but if a service mesh is already in place, the solution must
be able to work with the provided infrastructure.

NFR 7 The architecture must be scalable. In a cloud-native environment, the
application that is enhanced may be scaled. Therefore, the solution
must be able to scale with the application as well.

25

https://owasp.org/www-project-top-ten

Name Description
NFR 8 Each translator should only handle one authentication scheme to

ensure separation of concerns and scalability of the whole solution.
NFR 9 The solution depends on an external software for data transmission.

The solution must not interfere with the data plane. Error handling of
the data plane is handled by the external application.

NFR 10 The solution handles errors in the translation and the automation
engine according to the architectural description.

These goals and non-goals define the first list of REQ and NFR. During future work, this
list may change to adjust to new challenges.

4.3 Differentiation from Security Assertion Markup Language

The “Security Assertion Markup Language” (SAML) is a so-called “Federated Identity
Management” (FIdM) standard. SAML, OAuth, and OIDC represent the three most
popular FIdM standards. SAML is an XML framework for transmitting user data, such
as authentication, entitlement, and other attributes, between services and organizations
[16].

While SAML is a partial solution for the stated problem, it does not cover the use case
when credentials need to be transformed to communicate with a legacy system. SAML
enables services to share identities in a trustful way, but all communicating partners
must implement the SAML protocol to be part of the network. This project addresses
the specific transformation of credentials into a format for some legacy systems. The
basic concept of SAML may be used as a baseline of security and the general idea of
processing identities.

4.4 Architecture of the Distributed Authentication Mesh

The following sections provide an architectural description of the proposed solution.
First, a description gives an initial overview of the architecture and the conceptional
idea. Afterward, an abstract architecture describes the concepts behind the distributed
authentication mesh. Then the architecture is concretized with platform-specific examples
based on Kubernetes.

The reader should note that the proposed architecture does not match the implementation
of the PoC to the full extent. The goal of this project is to provide an abstract idea
to implement such an authentication mesh, while the PoC proves the ability to modify
HTTP requests in-flight.

26

4.4.1 Federated Identity with Diverging Authentication Schemes

When a federated identity is used, a user is not required to present authentication
credentials for each communication between services. At some point, the user validates
his own identity and is authenticated in the application. This application can span
over several services that share the same “trust.” This does not contradict a zero-trust
environment. A federated identity can be validated by each service and thus may be
used in a zero-trust environment.

To achieve such a federated identity with diverging authentication schemes, the solution
converts validated credentials (like access tokens) to a domain specific language (DSL).
This format, in conjunction with a proof of the sender, validates the identity over the wire
in the communication between services without the need of additional authentication.
When all parties of a communication are trusted through verification, no information
about the effective credentials leaks into the communication between services.

The concept of the distributed authentication mesh is to replace any user credentials
from an outgoing HTTP request with the DSL representation of the user identity. On the
receiving side, the DSL encoded identity in the incoming HTTP request is transformed
to the valid user credentials for the target service.

Since the topic of the mesh is security, error handling is a delicate matter. The mesh
does depend on existing infrastructure and principles. In the example of the PoC, that is
implemented on Kubernetes, error handling relies on Kubernetes. The Operator injects
the translators and proxies and Kubernetes is responsible for the operational state of those
components. Thus, error handling is limited to the translator engine, which represents
the critical element in the solution. When the translator encounters any error and the
translator can not recover from the error, the request must be denied. The translator
may crash, and it lies in the responsibility of Kubernetes to restart the translator.

4.4.2 Conceptional Architecture

This section describes the architecture of the proposed solution in an abstract and
generalized way. As stated in the non-functional requirements, the concepts are not
bound to any specific platform or a specific implementation nor required to run in a
cloud environment. The concepts could be implemented as a “fat-client” solution for a
Windows machine.

27

Figure 10: Abstract Solution Architecture

Figure 10 shows the abstract solution architecture. In the “support” package, generally
available elements provide utility functions to the mesh. The solution requires a public
key infrastructure (PKI) to deliver key material for signing and validation purposes.
This key material may also be used to secure the communication between the nodes
(or applications). Configuration and secret storage enable the applications to store and
retrieve configurations and secret elements like passwords or key material.

Additionally, an optional automation component watches and manages applications. This
component enhances the application services with the required components to participate
in the distributed authentication mesh. Such a component is strongly suggested when
the solution is used in a cloud environment to enable dynamic usage of the mesh. The
automation injects the proxies, translators, and the required configurations for the
managed components.

A (managed) application service consists of three parts. The source (or destination)

28

service, which represents the deployed application itself, a translator that manages
the transformation between the DSL of the identity and the implementation specific
authentication format, and a proxy that manages the communication from and to the
application.

The communication between instances in the authentication mesh is handled by the
proxies. The mesh must not interfere with the data transmission, it is only responsible
for modifying HTTP headers. Handling errors on the data plane is not part of the mesh
and must be done by the implementation of the proxy.

4.4.3 Platform-Specific Example in Kubernetes

For the following sections, the architecture shows elements of a Kubernetes cloud envi-
ronment. The reason is to describe the specific architecture the context of the practice.
Table A.1 explains used terms and concepts in Kubernetes which are used to describe
the platform-specific architecture.

Since the example is Kubernetes specific, error handling and recovery mechanisms of
Kubernetes can be used. So if a part of the mesh crashes due to an unexpected error,
Kubernetes is responsible for restarting that part. Furthermore, Kubernetes is the
orchestrator which takes actions to provide the running state of all applications. If any
errors are encountered, proper logging must be provided.

4.4.3.1 Automation with an Operator The automation part of the mesh is optional.
When no automation is provided, the required proxy and translator elements must be
started and maintained by some other means. However, in the context of Kubernetes, an
Operator pattern enables an automated enhancement and management of applications.

29

Figure 11: Automation with an Operator in a Kubernetes Environment

The Operator (application lifecycle manager, see Section 2) in Figure 11 watches the
Kubernetes API for changes. When deployments or services are created, the Operator
enhances the respective elements. “Enhancing” means that additional containers are
injected into a deployment as sidecars. The additional containers contain the proxy and
the translator. While the proxy manages incoming and outgoing communication, the
translator manages the transformation of credentials from and to the DSL.

30

Figure 12: The Operator determines the relevance of an object with this logic. If an
object in Kubernetes is not a Deployment nor a Service, or does not contain
specific “Labels,” it is rejected.

To determine if an object is relevant for the automation, the operator uses the logic
shown in Figure 12. If the object in question is not a deployment (or any other deployable
resource, like a “Stateful Set” or “Daemon Set”) or a service, then it is not relevant for
the mesh. If the object is not configured to be part of the mesh, then the automation
ends here as well.

31

Figure 13: Automated Enhancement of a Deployment and a Service. If the Operator
decides that an object is relevant (see Figure 12), the object is enhanced
depending on its type.

The sequence that enhances deployments and services is shown in Figure 13. The operator
registers a “watcher” for deployments and services with the Kubernetes API. Whenever a
deployment or a service is created or modified, the operator receives a notification. Then,
the operator checks if the object in question “is relevant” by checking if it should be part
of the authentication mesh. This participation can be configured — in the example of
Kubernetes — via annotations, labels, or any other means of configuration. If the object
is relevant, the operator injects sidecars into the deployment or reconfigures the service
to use the injected proxy as the target for the network communication.

If the automation engine encounters errors, it relies on Kubernetes to perform actions to
reach a meaningful state. Since the engine runs on Kubernetes, if any operational errors
occur, the application is restarted by Kubernetes. Logging is essential to find such errors.
If deployments and services cannot be modified, the operator shall try again in the next
reconciliation cycle.

4.4.3.2 Public Key Infrastructure The role of the public key infrastructure (PKI) in
the solution is to act as the source for trust in the system. The PKI is responsible for
generating and delivering key material to various components. As an example, a translator
fetches a public/private key pair on startup and can sign the translated credentials with
the key material. A receiver can then validate the signature and check the integrity of
the transmitted data.

32

Figure 14: The Relation of the Public Key Infrastructure and the System

Figure 14 depicts the relation of the translators and the PKI. When a translator starts,
it acquires trusted key material from the PKI (for example, with a certificate signing
request). This key material provides the possibility to sign the identity that is transmitted
to the receiving party. The receiving translator can validate the signature of the identity
and the sending party. The proxies are responsible for the communication between the
instances.

33

Figure 15: Provide Key Material to the Translator

The sequence in Figure 15 shows how the PKI is used by the translator to create key
material for itself. When a translator starts, it checks if it already generated a private
key and obtains the key (either by creating a new one or fetching the existing one).
Then, a certificate signing request (CSR) is sent to the PKI. The PKI will then create a
certificate with the CSR and return the signed certificate. The provided sequence shows
one possible use case for the PKI. During future work, the PKI may also be used to
secure communication between proxies with mTLS [17].

34

Figure 16: Checking the Signature of the transmitted Identity

When communication happens, as shown in Figure 16, the proxy forwards the HTTP
headers that contain the transferred identity of the user in the DSL to the translator. In
the case of a JWT token, the transformer may now confirm the signature of the JWT
token with the obtained certificate since it is signed by the same Certificate Authority
(CA). Then the transformation is performed and the proxy forwards the communication
to the destination.

To increase the security and mitigate the problem of leaking certificates, it is advised to
create short-living certificates in the PKI and refresh certificates periodically.

If the PKI encounters illegal signing requests, it must deny them. If any other unexpected
errors happen, the application should log the error and then crashes to enable Kubernetes
to restart the application again.

4.4.3.3 Networking with a Proxy Networking in the proposed solution works with
a combination of routing and communication proxying. The general purpose of the
networking element is to manage data transport between instances of the authentication
mesh and route the traffic to the source/destination.

35

Figure 17: Networking with an Proxy

As seen in Figure 17 the proxy is the mediator between source and destination of a
communication. Additionally, he proxy manages the translation of the credentials by
communicating with the translator to transform the identity of the authenticated user
and transmit it to the destination where it gets transformed again. In addition, with the
help of the PKI, the proxy can verify the identity of the sender via mTLS.

Since the authentication mesh relies on external software to take care of communication
and networking, error handling is off-loaded to that specific software as well. The
authentication mesh does not guarantee any connectivity between parts of the mesh. In
the platform-specific example, if the configuration provided by the automation engine is
faulty, Envoy will crash and log this matter to the standard output (i.e. the console). Any
other errors encountered by Envoy result in their respective HTTP error messages.

Figure 18: Outbound Networking Sequence

Outbound Communication for an Application In Figure 18 the outbound traffic flow is
shown. The proxy is required to catch all outbound traffic from the source and performs

36

the reversed process of Figure 19 by transforming the provided credentials from the source
to generate the common format with the user identity. This identity is then inserted into
the HTTP headers and sent to the destination. At the sink, the process of Figure 19
takes place — if the sink is part of the authentication mesh.

Figure 19: Inbound Accepted Networking Sequence

Inbound Accepted Communication for an Application Figure 19 shows the general
invocation during inbound request processing. When the proxy receives a request (in the
stated example by the configured Kubernetes service), it calls the translator with the
HTTP request detail. The PoC is implemented with an “Envoy” proxy. Envoy allows an
external service to perform “external authorization”14 during which the external service
may:

• Add new headers before reaching the destination
• Overwrite headers before reaching the destination
• Remove headers before reaching the destination
• Add new headers before returning the result to the caller
• Overwrite headers before returning the result to the caller

The translator uses this concept to consume a specific and well-known header to read the
identity of the authorized user in the DSL. The identity is then validated and transformed
to the authentication credentials needed by the destination. Then, the translator instructs
Envoy to set the credentials for the upstream. In the PoC, this is achieved by setting the
Authorization header to static Basic Authentication (RFC7617) credentials.

14https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/ext_authz_filter

37

https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/ext_authz_filter

Inbound rejected Communication for an Application If the incoming communication
contains faulty, invalid, or no identification data, the proxy blocks the communication.

Figure 20: Inbound Rejected Networking Sequence

Figure 20 shows the sequence when no or invalid identity data is provided. The responses
of the translator are defined in RFC1945 and are the HTTP response status codes [18].
The translator distinguishes two cases:

• No identity data
• Invalid identity data

If no identity data is present, the translator must return HTTP 401 Unauthorized,
the error that is used when no authorization credentials are provided. When invalid
authorization credentials are provided (a false or a modified identity), the translator must
return HTTP 403 Forbidden, which is used when credentials are provided, but they are
not valid [18].

4.4.3.4 The Translation of Credentials to an Identity The translator is responsible
for transforming the identity from and to the domain-specific language (the common
format). In conjunction with the PKI, the translator can verify the validity and integrity
of the incoming identity.

38

Figure 21: Translation of the transmitted user identity from the common format to the
required format by the destination

When the translator receives a request to create the required credentials, it performs the
sequence of actions as stated in Figure 21. First, the proxy will forward the HTTP request
data to the translator. Afterward, the translator checks if the transported identity is valid
and signed by an authorized party in the authentication mesh. When the credentials are
valid, they are translated according to the implementation of the translator. The proxy
is then instructed with the actions to replace the transported identity with the correct
credentials to access the destination.

The translator is the critical part of the authentication mesh. If it receives invalid creden-
tials (e.g. an identity that has been tampered with, or just a wrong username/password
combination), it must reject the request with a HTTP 403 Forbidden response. If no
identity is provided at all, a HTTP 401 Unauthorized must be sent. When the translation
engine encounters any unexpected error during translation of the identity (like not being
able to access the secret storage, or failure of some database), it must reject the request.
The translator must reject any request that cannot be transformed successfully. This
error handling is used on the receiving and the sending side.

In the PoC, the proof of integrity is not implemented, but the transformation takes place,
where a “Bearer Token”15 is used to check if the user may access the destination and
then replaces the token with static Basic Authentication credentials.

15Access token of an IDP.

39

4.5 Securing the Communication between Applications

The communication between the proxies must be secured. Furthermore, the identity
that is transformed over the wire must be tamper-proof. Two established formats would
suffice, “SAML” and “JWT Tokens.” While both provide the possibility to hash their
contents and thus secure them against modification, in current OIDC environments,
JWT tokens are already used as access and/or identity tokens. JWT provides a secure
environment with public and private claim names [19].

Other options to encode the identity are:

• Normal JSON
• YAML
• XML
• X509 Certificates
• Concise Binary Object Representation (CBOR) [20]

The problem with other structured formats is that tamper protection and encoding must
be implemented manually. JWT tokens provide a specified way of attaching a hashed
version of the complete content and therefore provide a method of validating a JWT
token if it is still pristine and if the sender is trusted [19]. If the receiving end fetched the
key material from the same PKI (and therefore the same CA), it can check the certificate
and the integrity of the JWT token. If the signature is correct, the JWT token has been
issued by a trusted and registered instance of the authentication network.

X509 certificates — as defined in RFC5280 [21] — introduce another valid way of
transporting data and attributes to another party. “Certificate Extensions” can be
defined by “private communities” and are attached to the certificate itself [21].

While X509 certificates could be used instead of JWT to transport this data, using
certificates would enforce the translator to act as intermediate CA and create new
certificates for each request. From our experience, creating, extracting, and manipulating
certificates, for example in C#, is not a task done lightly. Since this solution should be
as easy to use as it can be, manipulating certificates in translators do not seem to be a
feasible option. For the sake of simplicity and well-known usage, further work on this
project will probably use JWT tokens to transmit the identity data.

4.6 Implementation Proof of Concept (PoC)

To prove that the general idea of the solution is possible, a PoC is implemented during the
work of this project. The following technologies and environments build the foundation
of the PoC:

• Environment: The PoC is implemented on a Kubernetes environment to enable
automation and easy deployment for testing

40

• “Automation”: A Kubernetes operator, written in .NET (C#) with the “Dotnet
Operator SDK”16

• “Proxy”: Envoy proxy which gets the required configuration injected as Kubernetes
ConfigMap file

• “Translator”: A .NET (F#) application that uses the Envoy gRPC definitions
to react to Envoy’s requests and poses as the external service for the external
authorization

• “Sample Application”: A solution of three applications that pose as demo case
with:

– “Frontend”: An ASP.NET static site application that authenticates itself
against “ZITADEL”17

– “Modern Service”: An ASP.NET API application that can verify an OIDC
token from ZITADEL

– “Legacy Service”: A “legacy” ASP.NET API application that is only able to
verify Basic Auth (RFC7617, see Section 2.6.1)

The PoC addresses the following questions:

• Is it possible to intercept HTTP requests to an arbitrary service
• Is it further possible to modify the HTTP headers of the request
• Can a sidecar service transform given credentials from one format to another
• Can a custom operator inject the following elements:

– The correct configuration for Envoy to use external authentication
– The translator module to transform the credentials

Based on the results of the PoC, the following further work may be possible:

• Specify the concrete format to transport identities
• Implement a secure way of transporting identities with validation of the integrity
• Provide production-ready versions for some translators and the operator
• Integrate the solution with a service mesh
• Further investigate the possibility of hardening the communication between services

(e.g. with mTLS)

For the solution to be production-ready, at least the secure communication channel
between elements of the mesh as well as the DSL for the identity must be implemented.
To be of use in current cloud environments, an implementation in Kubernetes can provide
insights on how to develop the solution for other orchestrators than Kubernetes.

When considering the abstract architecture in Figure 10, the PoC on Kubernetes covers
all elements but the PKI. The automation engine is implemented with a custom Operator
as stated above. The proxy is a configured Envoy proxy configured by the Operator.

16https://github.com/buehler/dotnet-operator-sdk
17https://zitadel.ch

41

https://github.com/buehler/dotnet-operator-sdk
https://zitadel.ch

The credential transformer is a custom software written in .NET (F#). Config and
Secret Storage are covered by Kubernetes itself with “ConfigMap” and “Secret” objects
in Kubernetes.

4.6.1 Case Study for the PoC

The demo application demonstrates the particular use case of the distributed au-
thentication mesh. The application resides in an open-source repository on GitHub
(https://github.com/WirePact/poc-showcase-app).

To install and run the case study without any interference of the Operator or the rest of
the solution, follow the installation guide in the README on https://github.com/Wir
ePact/poc-showcase-app. To install and use the whole PoC, following the instructions in
Appendix B will install the operator and the case study.

When installed in a Kubernetes cluster, a user can open (depending on the local configu-
ration) the URL to the frontend application18.

Figure 22: Component Diagram of the Case Study

Figure 22 gives an overview of the components in the showcase application. The system
contains an ASP.NET Razor Page19 application as the frontend, an ASP.NET API
application with configured ZITADEL OIDC authentication as “modern” backend service,
and another ASP.NET API application that only supports Basic Authentication as
“legacy” backend. The frontend can only communicate with the modern API while the
modern API can call an additional service on the legacy API.
18In the example, it is “https://kubernetes.docker.internal” since this is the local configured default URL

for “Docker Desktop”
19https://docs.microsoft.com/en-us/aspnet/core/razor-pages/

42

https://github.com/WirePact/poc-showcase-app
https://github.com/WirePact/poc-showcase-app
https://github.com/WirePact/poc-showcase-app
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/

Figure 23: Sequence Diagram of the Communication in the Case Study

In Figure 23, we show the process of a user call in the demo application. The user
opens the web application and authenticates himself with ZITADEL. After that, the user
is presented with the application and can click the “Call API” button. The frontend
application calls the modern backend API with the access token from ZITADEL and
asks for customer and order data. The customer data is present on the modern API,
therefore it is directly returned. To fetch the order data, the modern service relies on a
legacy application which is only capable of Basic Authentication.

Depending on the configuration (i.e. the environment variable USE_WIREPACT), the
modern service will call the legacy application with either transformed basic authen-
tication credentials (when USE_WIREPACT=false) or with the ZITADEL access token
(USE_WIREPACT=true). Either way, the legacy API receives basic authentication creden-
tials in the form of <username>:<password> and returns the data.

43

4.6.2 Automation Engine for Applications

As explained in Section 4.4.2, the automation engine is generally optional. If omitted, the
user is responsible for configuring the proxy and the translator. In the PoC, the automation
engine is a Kubernetes Operator written with the .NET SDK in C#. The source of
the PoC Operator resides on GitHub: https://github.com/WirePact/poc-operator.
The Operator (automated and customized management of resources in Kubernetes, see
Section 2.3) intercepts events for Deployments and Services. To update services and
deployments in the PoC, an annotation (key-value storage in the metadata of an object
in Kubernetes) is used. In future work, the Operator may react to Custom Resource
Definitions (CRD) as well.

Figure 24: Activity Model for Kubernetes Resources in the Automation Engine

Figure 24 gives an overview of the process that an event of the Kubernetes API completes.
When the Operator receives a notification by Kubernetes that a service or a deployment
was created or modified, the Operator determines the type and uses the specific controller
to reconcile the resource. If the entity is a deployment/service and is relevant for the
authentication mesh, the Operator will modify the deployment/service.

In the case of a deployment, the first step of the Operator is to determine if the entity is
relevant for the authentication mesh with the concept in Figure 12. If the deployment
contains the annotation ch.wirepact/port in its metadata, it is automatically part of
the mesh. If the deployment is already configured, further reconfiguration is skipped.
Otherwise, the Operator fetches the already configured ports of the deployment, and
generates two additional ports. One port is used for the Envoy sidecar while the other
is configured for the translator sidecar. The next step is to generate and store the
Envoy configuration in a Kubernetes ConfigMap. Last, the sidecars are injected into the
deployment configuration and the Kubernetes client stores the modified manifest.

When reconciling a service, the service counts as relevant if the annotation
ch.wirepact/deployment is present in the metadata of the service. The value

44

https://github.com/WirePact/poc-operator

of this annotation stores the deployment object to which the service should point. The
Operator reads the annotations on the service to determine the port in question and
searches for the port in its manifest. The port will receive a new “target port” that
points to the Envoy port of the deployment. Last, the Kubernetes client will store the
changed service.

4.6.3 Network and Routing Proxy for Communication

In the PoC, the proxy sidecar is an Envoy proxy with its configuration injected by the
automation engine. The Operator injects the sidecar whenever a Deployment is created
or updated via the Kubernetes API. A ConfigMap with the envoy configuration is created
during reconciliation.

Two parts of the envoy configuration are crucial. First, the filter_chain of the inbound
traffic listener contains a list of http_filters. Within this list of filters, the external
authorization filter is added to force Envoy to check if a request is allowed or not:

... more config
http_filters:

- name: envoy.filters.http.ext_authz
typed_config:

'@type': type.googleapis.com/
envoy.extensions.filters.http.
ext_authz.v3.ExtAuthz

transport_api_version: v3
grpc_service:

envoy_grpc:
cluster_name: auth_translator

timeout: 1s
include_peer_certificate: true

- name: envoy.filters.http.router
... more config

Second, via the configured name (auth_translator), the external authorization service
must be added to the clusters list:

... more config
- name: auth_translator

connect_timeout: 0.25s
type: STATIC
typed_extension_protocol_options:

envoy.extensions.upstreams.http.v3.HttpProtocolOptions:
'@type': type.googleapis.com/

envoy.extensions.upstreams.http.

45

v3.HttpProtocolOptions
explicit_http_config:

http2_protocol_options: {}
load_assignment:

cluster_name: auth_translator
endpoints:

- lb_endpoints:
- endpoint:

address:
socket_address:

address: 127.0.0.1
port_value: <<PORT_VALUE>>

... more config

This configures Envoy to find the external authorization service on the local loopback IP
on the configured port. Since the transformer uses gRPC (grpc_service: envoy_grpc:
... in the filter config), http2 must be enabled for the communication. In a productive
environment, timeouts should be set accordingly.

4.6.4 Translator

The translator is the part of the PoC that performs the modification of HTTP headers
per request. Since the intermediate DSL is not implemented in the PoC, the translator
converts an access token to static basic authentication credentials. If any error occurs or
the translator call exceeds ten seconds, Envoy returns a HTTP 403 Forbidden message
by default. The source code is on GitHub: https://github.com/WirePact/poc-demo-
translator.

46

https://github.com/WirePact/poc-demo-translator
https://github.com/WirePact/poc-demo-translator

Figure 25: Communication with an Invalid Access Token

Figure 25 shows the sequence for an access token that is not valid. Envoy forwards the
HTTP headers to the translator that extracts the Authorization header. If it is not
a Bearer access token, or if the validation with ZITADEL fails (if the token is invalid
or has expired), the translator returns an Unauthorized (HTTP 401) or Forbidden
(HTTP 403) response depending on the status. The Unauthorized status is returned
when no access token is provided (i.e. the HTTP header is missing). Forbidden is used
if the token is invalid. In either case, Envoy will return the returned status code to
the caller and terminates the request. The destination application does not receive any
communication or notification about this event.

47

Figure 26: Communication with a Valid Access Token

In contrast to Figure 25, the sequence in Figure 26 shows the success path of a com-
munication. If the given access token is valid, the translator fetches the static Basic
Authentication credentials (i.e. username and password) from the secret storage. The
secret storage in the PoC is a simple Kubernetes Secret. The received credentials are
then transformed in the correct encoded Basic Authentication format (as described in
RFC7617). The translator returns an instruction set for Envoy to process the HTTP
request. Envoy executes the instructions and forwards the call to the destination and
returns the response — if any.

When the translator decides that the request is unauthorized or forbidden, it returns a
DeniedResponse to Envoy. The response is encoded in a binary “Protocol Buffers”20.

In contrast to the rejected response, an accepting response may include modifications for
HTTP headers. It is possible to add new, modify, and remove headers from the request
for the upstream (i.e. the destination of the request), as well as adding additional or
modifying headers for the downstream (i.e. the source of the request when the result is
returned).

20Binary Data Format by Google: https://developers.google.com/protocol-buffers

48

https://developers.google.com/protocol-buffers

5 Evaluation

This section evaluates the concepts and the architecture of Section 4. The main goal
is to show that the proposed solution can improve the current situation and does not
introduce security issues when used.

5.1 Architecture against Requirements

To show that the architecture of the distributed authentication mesh has the potential to
improve the developer experience and the current situation with legacy or third-party
software, we compare the architecture against the non-functional requirements established
in Section 4.

5.1.1 NFR 1: Improve Security

NFR1: First and foremost, the solution must not be less secure than current
solutions.

Without the distributed authentication mesh, credentials like access tokens or basic
authentication credentials are transmitted in the HTTP headers. This is a well-known
way of authorizing requests [18]. If the current standard is regarded “secure” — not
judging by the authorization scheme — then the mesh is secure as well. It even improves
security by hiding the original credentials.

In the PoC, the credentials are still transmitted. The PoC is responsible to show that
modifying HTTP headers during a request is possible. Securing the implementation of
the concept is not part of this project.

5.1.2 NFR 2: Secure implementation

NFR 2: The solution must adhere to current best practices and security
mechanisms. Furthermore, it must be implemented according to the standards
of the practice to mitigate security issues as stated in the OWASP Top Ten
(https://owasp.org/www-project-top-ten).

The following list shows the OWASP top ten security issues with the comparison to the
architecture:

1. Injection: The distributed authentication mesh does not use any database or LDAP
features. Thus, there is no attack vector for an injection attack.

49

2. Broken Authentication21: The mesh does not implement a security scheme by
itself. The only part that can be targeted by broken authentication attacks is the
transformer. Developers of each translator are responsible to adhere to the OWASP
principles and state-of-the-art security mechanisms.

3. Sensitive Data Exposure: The transmitted user identity must not include sensitive
data. Sensitive data, such as financial or healthcare data is not part of a user
identity and not needed for the mesh. Data, such as the user id or the name of a
user, may be transmitted.

4. XML External Entities: The mesh does not use XML.
5. Broken Access Control: The mesh only provides valid credentials for the target

system. It is not responsible for the authorization and enforcement of rules. The
application that uses the mesh is responsible to enforce authorization rules.

6. Security Misconfiguration: The mesh does not directly influence used authentication
schemes. However, the translators are directly responsible to use the correct HTTP
headers for the target authentication mechanism. Developers of translators therefore
responsible to correctly implement the authentication schemes.

7. Cross-Site Scripting (XSS): The mesh is not part of any public-facing application.
No code gets executed. Therefore, XSS is not possible.

8. Insecure Deserialization: Under the assumption that JWT is used to transmit the
user identity between participating elements, this flaw is negated. The validation
and deserialization of JSON does not execute any code since JSON cannot transmit
executable data. The translator must not execute any data it receives from the
JWT.

9. Using Components with Known Vulnerabilities: This may be an issue if developers
of translators do not update their software. The translator is the “moving part” of
the mesh, which can be implemented by other developers as well. Developers must
update their translators to eliminate this issue.

10. Insufficient Logging & Monitoring: This issue cannot be validated based on the
architecture of the mesh. Since there is no production-ready implementation,
logging is a part of the future work.

As the list above shows, the architecture does eliminate or out-source the OWASP issues.
Translators must be implemented with special care to adhere to the security standards.

5.1.3 NFR 3: Generic Usage

NFR 3: The concept of the solution is applicable to cluster orchestration
software other than Kubernetes. The architecture provides a general way of
solving the stated problem instead of giving a proprietary solution for one
vendor. The concept should even be realizable for non-orchestration platforms
like a Windows operating system.

21Broken Authentication relates to incorrectly implemented authentication and session management.
This would allow attackers to compromise sessions and passwords.

50

The abstract architecture in Section 4 is generic. All components may be implemented
on any platform and with any programming language of choice. The automation engine
is optional so that the proposed concept may be implemented as a macOS or Windows
software. There is no special requirement for any part of the mesh that ties the solution
to a specific vendor.

5.1.4 NFR 4: Performance Impact

NFR 4: The translation of the credentials should not extensively impact the
timeframe of an arbitrary request. In production mode, the additional time
to check and transform the credentials should not exceed 100ms. This is a
general recommendation and some authentication mechanism may exceed the
stated 100ms.

The architecture does not give hints about the effective performance impact. This
generally depends on the used authentication scheme and the implementation of the
transformer. Each transformer is responsible to achieve this goal. The solution is —
theoretically — not limited in execution time, but to function as a production-ready
solution, it must not impact the execution time of requests significantly.

5.1.5 NFR 5: Modularity

NFR 5: The solution must be extensible with additional “translators” that
provide the means of transforming the given credentials to other target
formats.

The architecture shows that the translator is a component that is orchestrated by the
automation engine. The translators should target one specific authentication scheme
and can be implemented in any language or framework. They must only adhere to the
principles of the mesh. It is not defined how the communication between the proxy and
the translator takes place. In the PoC, Envoy (as the proxy) has a well-defined gRPC
definition for such communication. Further work may contain the definition of translators
for the automation engine. Using Envoy and the gRPC definition is a feasible option to
implement a production-ready version of the mesh when using a cloud environment.

5.1.6 NFR 6: Integration into Infrastructure

NFR 6: The solution may run with or without a service mesh. It is a goal that
the solution can run without a service mesh to reduce the overall complexity,
but if a service mesh is already in place, the solution must be able to work
with the provided infrastructure.

51

The shown architecture in Section 4 does not interfere with a service mesh. If a ser-
vice mesh is already deployed on a cloud environment, the automation engine must
configure/reuse the parts that are already given by the service mesh.

5.1.7 NFR 7: Scalability

NFR 7: The architecture must be scalable. In a cloud-native environment,
the application that is enhanced may be scaled. Therefore, the solution must
be able to scale with the application as well.

Section 4 shows that the automation engine does enhance Kubernetes pods. A pod is
one unit of deployment. When a pod is scaled by Kubernetes, all containers in the pod
do scale as well. Since all parts of the mesh are complete packages, they do scale with
the pod.

5.1.8 NFR 8: Separation of Concerns

NFR 8: Each translator should only handle one authentication scheme to
ensure separation of concerns and scalability of the whole solution.

The architecture does not define the effective implementation of the translators. Each
translator can be written in any language or framework. The responsibility to adhere to
the separation of concerns is handed over to the developers of translators.

5.1.9 NFR 9: No Data-Transfer

NFR 9: The solution depends on an external software for data transmission.
The solution must not interfere with the data plane. Error handling of the
data plane is handled by the external application.

The proxy and translator only modify HTTP headers. The effective transmission of the
data between the parties is not part of the authentication mesh. As such, error handling
for the transmission is also out-sourced to the used proxy software.

5.1.10 NFR 10: Error Handling

NFR 10: The solution handles errors in the translation and the automation
engine according to the architectural description.

52

All parts of the distributed authentication mesh rely on external software, except for
translators. The automation engine is optional and if it fails, the underlying system is
responsible to restart the engine. The source and destination services are not in the
responsibility of the mesh by themselves. In the PoC, the proxy is an Envoy instance
that contains error handling for the data-transfer. In addition, Kubernetes provides error
handling for non-running applications and is responsible for the running state of the
applications.

The only critical elements in the authentication mesh are translators. Since they are
custom implementations, they must contain error handling for the requests. Translators
receive HTTP headers and must parse some user identity out of it. If a translator is not
able to construct the necessary HTTP headers for the destination, the request must fail.
If any other error occurs (e.g. user repository not accessible) the request must fail as
well.

Section 4 states that in the case of a timeout, error, or invalid data, the request must be
blocked by the translator. Only valid requests must be let through to the destination.

5.2 Leaking Credentials and Developer Experience

As stated in Section 3, when applications with diverging authentication schemes commu-
nicate with each other, they must transmit credentials to the destination. Otherwise, it
would not be possible to authenticate a user in each system.

The distributed authentication mesh replaces the need of effective credentials in commu-
nication with federated identity. Similar to SAML (explained in Section 4), an encoded
identity is transmitted with the request instead of user credentials such as passwords or
access tokens. This identity is then translated to effective credentials in the translator
and ultimately forwarded to the target application.

Another identified problem in Section 3 is the introduction of code changes when the use
case for the authentication mesh arises. To enable “modern software” to talk with “legacy
software” (or third-party software), most likely the modern software will implement the
translation logic. This may introduce bugs and does not scale when the service landscape
grows.

The proposed concept enables developers to declaratively (via configuration) transform
such credentials between applications. When used in a cloud environment, the automation
engine can take care of all moving parts. With the solution in place, a developer is only
required to configure the application as part of the mesh and the automation engine will
inject the needed proxy and translators. After the automation step has taken place, the
application is enhanced with additional authentication schemes without implementing
the effective translation.

Therefore, the distributed authentication mesh enhances the general security of a system
by removing the need of transmitting credentials to other services. Also, the developer

53

experience is improved by allowing software developers to configuratively add authentica-
tion schemes to their software instead of manually developing conversion mechanisms for
credentials.

54

6 Conclusions and Outlook

This report developed a potential solution to the problem of dynamic credential trans-
formation in systems with diverging authentication mechanisms. In Section 1, a brief
overview stated the problem and described the goal of the project.

Section 2 defined the scope of the project and explained various technologies and terms
like “Kubernetes,” “Operator Pattern,” and “Sidecar Pattern.” Additionally, Section 2
introduced vital information about authentication, authorization, and security standards
required for the general understanding of this report.

Section 3 gave an overview of the current state of the art and the current problems. The
maintainability of implementing multiple authentication schemes and the leakage of user
credentials (like access tokens) onto the wire were identified as core problems.

To solve the stated problems in Section 3, a conceptional architecture was proposed
in Section 4. To show the architecture within a practical environment, Section 4 also
gave a platform-specific example of the architecture in Kubernetes. The concept of
the distributed authentication mesh introduced a solution to the issues of diverging
authentication schemes and leakage of credentials. When using a proxy component to
intercept traffic from and to a service, a “translator” component can modify the HTTP
headers of the requests. This removed the requirement of transmitting sensitive credentials
over the wire, which fixed the problem of leaking credentials. The translator transforms
outgoing credentials (for example an access token) to a common format. On the receiving
side, the proxy intercepts the request and the translator converts the common format into
the authentication scheme fitting the destination service. With the same procedure, the
issue of implementing multiple authentication schemes in an application was addressed
as well. It is possible to have multiple transformers and therefore serve a multitude of
authentication mechanisms without introducing code changes to the applications.

The design of the distributed authentication mesh came close to the concept of SAML
(Security Assertion Markup Language). While SAML provides a federated identity,
it requires the participating services to implement the SAML protocol as well, the
authentication mesh removes this requirement. The shown concept improves the developer
experience by allowing dynamic credential transformation.

To validate if the concept is feasible, the Proof of Concept in Section 4 has shown
that it is possible to modify HTTP headers in-flight and therefore the core concept
of the architecture is generally possible. Furthermore, Section 5 checked if the given
requirements and goals/non-goals were achieved with the proposed architecture. The
evaluation shows that the solution is able to enhance general security by preventing the
leakage of credentials.

As complementation to the main delivery of this project — the concept of the distributed
authentication mesh — teaching material was created that can be found in Appendix C.
It targets the topic of “Kubernetes Operators and how to create them.” This material

55

may be used to introduce people to the operator pattern and helps to create a custom
operator with an SDK.

The goal of the future work is to provide a federated authentication with secured
communication without leakage of credentials out of the trust zone. The analysis,
definition, and implementation of a common identity format for the transmission in
future work complements the concept of the distributed authentication mesh. The
concepts of the mesh will be used to implement a production-ready version of the
authentication mesh in Kubernetes.

With the implementation of the authentication mesh in Kubernetes, various use cases
can be covered. As an example, in the finance sector, banking APIs tend to use varying
authentication schemes and do not wish to change their applications. The authentication
mesh improves this situation by covering the dynamic transformation of credentials
to the respective format. The concept of the distributed authentication mesh can be
implemented as an application that runs directly on an operating system to provide a
federated identity into a company network. It negates the requirement of implementing
technologies like SAML in each application that is accessed in this company network.

When regarding the current trends, applications will become more heterogeneous in the
future. Authentication protocols come and go, and it is not likely that one particular
standard will solve all issues. The concepts of this project contribute to sustainability
and reusability in the security world.

56

Bibliography

[1] CNCF, “Production-grade container orchestration,” Kubernetes Website. https:
//github.com/kubernetes/website; GitHub, Mar. 2021.Available: https://kubern
etes.io/

[2] Creative Commons, “Attribution 4.0 international (CC BY 4.0).” https://creative
commons.org/licenses/by/4.0/, 2021.

[3] J. Dobies and J. Wood, Kubernetes operators: Automating the container orches-
tration platform. O’Reilly Media, Inc., 2020.

[4] B. Burns and D. Oppenheimer, “Design patterns for container-based distributed
systems,” Jun. 2016.Available: https://www.usenix.org/conference/hotcloud16/w
orkshop-program/presentation/burns

[5] W. Li, Y. Lemieux, J. Gao, Z. Zhao, and Y. Han, “Service mesh: Challenges,
state of the art, and future research opportunities,” in 2019 IEEE international
conference on service-oriented system engineering (SOSE), 2019, pp. 122–1225.
doi: 10.1109/SOSE.2019.00026.

[6] F. Montesi and J. Weber, “Circuit breakers, discovery, and API gateways in
microservices,” CoRR, vol. abs/1609.05830, 2016,Available: http://arxiv.org/abs/
1609.05830

[7] J. Reschke, “The ’Basic’ HTTP authentication scheme,” Internet Engineering
Task Force IETF, RFC, 2015.Available: https://tools.ietf.org/html/rfc7617

[8] D. Hardt and others, “The OAuth 2.0 authorization framework,” Internet Engineer-
ing Task Force IETF, RFC, 2012.Available: https://tools.ietf.org/html/rfc6749

[9] N. Sakimura, J. Bradley, M. Jones, B. De Medeiros, and C. Mortimore, “Openid
connect core 1.0,” The OpenID Foundation OIDF, Spec, 2014.Available: https:
//openid.net/specs/openid-connect-core-1_0.html

[10] S. Rose, O. Borchert, S. Mitchell, and S. Connelly, “Zero trust architecture,”
National Institute of Standards; Technology, 2019.

[11] N. Kratzke and R. Peinl, “ClouNS - a cloud-native application reference
model for enterprise architects,” in 2016 IEEE 20th international enterprise
distributed object computing workshop (EDOCW), 2016, pp. 1–10. doi:
10.1109/EDOCW.2016.7584353.

[12] M. Feathers, Working effectively with legacy code. USA: Prentice Hall PTR, 2004.

57

https://github.com/kubernetes/website
https://github.com/kubernetes/website
https://kubernetes.io/
https://kubernetes.io/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/burns
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/burns
https://doi.org/10.1109/SOSE.2019.00026
http://arxiv.org/abs/1609.05830
http://arxiv.org/abs/1609.05830
https://tools.ietf.org/html/rfc7617
https://tools.ietf.org/html/rfc6749
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://doi.org/10.1109/EDOCW.2016.7584353

[13] Istio Authors, “Mutual TLS migration,” Istio. Mar. 2021.Available: https:
//istio.io/latest/docs/tasks/security/authentication/mtls-migration/

[14] Istio Authors, “External authorization,” Istio. Mar. 2021.Available: https:
//istio.io/latest/docs/tasks/security/authorization/authz-custom/

[15] F5 Inc. Authors, “Authentication based on subrequest result,” NGINX. 2021.Avail-
able: https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-
subrequest-authentication/

[16] N. Naik and P. Jenkins, “Securing digital identities in the cloud by selecting an
apposite federated identity management from SAML, OAuth and OpenID connect,”
in 2017 11th international conference on research challenges in information science
(RCIS), 2017, pp. 163–174. doi: 10.1109/RCIS.2017.7956534.

[17] P. Siriwardena, “Mutual authentication with TLS,” in Advanced API security:
Securing APIs with OAuth 2.0, OpenID connect, JWS, and JWE, Berkeley, CA:
Apress, 2014, pp. 47–58. doi: 10.1007/978-1-4302-6817-8_4.

[18] H. Nielsen, R. T. Fielding, and T. Berners-Lee, “Hypertext Transfer Pro-
tocol – HTTP/1.0,” RFC 1945; RFC Editor, RFC 1945, May 1996. doi:
10.17487/RFC1945.

[19] M. B. Jones, Bradley John, and N. Sakimura, “JSON web token (JWT),” Internet
Engineering Task Force IETF, RFC, May 2015.Available: https://tools.ietf.org/h
tml/rfc7519

[20] C. Bormann and P. E. Hoffman, “Concise Binary Object Representation (CBOR),”
Internet Engineering Task Force IETF, RFC, 2020. doi: 10.17487/RFC8949.

[21] D. Cooper, S. Boeyen, S. Santesson, T. Polk, R. Housley, and S. Farrell, “Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile,” Internet Engineering Task Force IETF, RFC 5280, May 2008. doi:
10.17487/RFC5280.

[22] P. Bryan and M. Nottingham, “Javascript object notation (JSON) patch,” Internet
Engineering Task Force IETF, RFC, Apr. 2013.Available: https://tools.ietf.org/h
tml/rfc6902

[23] B. Selic, “Controlling the controllers: What software people can learn from
control theory,” IEEE Software, vol. 37, no. 6, pp. 99–103, 2020, doi:
10.1109/MS.2020.3006970.

58

https://istio.io/latest/docs/tasks/security/authentication/mtls-migration/
https://istio.io/latest/docs/tasks/security/authentication/mtls-migration/
https://istio.io/latest/docs/tasks/security/authorization/authz-custom/
https://istio.io/latest/docs/tasks/security/authorization/authz-custom/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-subrequest-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-subrequest-authentication/
https://doi.org/10.1109/RCIS.2017.7956534
https://doi.org/10.1007/978-1-4302-6817-8_4
https://doi.org/10.17487/RFC1945
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://doi.org/10.17487/RFC8949
https://doi.org/10.17487/RFC5280
https://tools.ietf.org/html/rfc6902
https://tools.ietf.org/html/rfc6902
https://doi.org/10.1109/MS.2020.3006970

Appendix A: Common Kubernetes Terminology

In Table A.1, we state the most common Kubernetes terminology. The table provides a
list of terms that is used to explain concepts like the Operator pattern.

Table A.1: Common Kubernetes Terminology
Term Description
Docker Container runtime. Enables developers to create container images of

applications. Those images are then run in an isolated environment.
Docker images are often used in Kubernetes to define the application
that Kubernetes should run.

Kustomize “Kustomize” is a special templating CLI to declaratively bundle
Kubernetes manifests. It consists of a kustomization.yaml and
various referenced manifest yaml files. It is declarative and does not
allow dynamic structures. It helps administrators template applications
for Kubernetes.

Container Smallest possible unit in a deployment. Contains the definition of the
workload. A container consists of a container image, arguments,
volumes and other specific information to carry out a task.

Pod Composed of multiple containers. It is ran by Kubernetes as an
instance of a deployment. Pods may be scaled according to definitions
or “pod scalers.” Highly coupled tasks are deployed together in a pod
(i.e. multiple coupled containers in a pod).

Deployment
Daemonset
Statefulset

A “Deployment” is a managed instance of a pod. Daemonsets and
Statefulsets are variants of deployments. Kubernetes will run the
described pod(s) with the desired replica count on the best possible
worker node. Deployments may be scaled with auto-scaling
mechanisms.

Service A service enables communication with one or multiple pods. The
service contains a selector that points to a certain number of pods and
then ensures that the pods are accessible via a DNS name. The name
is typically a combination of the service name and the namespace
(e.g. my-service.namespace).

Ingress Incoming communication and data flow into a component.
Furthermore, an “Ingress” is a Kubernetes object that defines incoming
communication and configures an API gateway to route traffic to
specific services.

Egress Outgoing communication. Egress means communication from a
component to another (when the component is the source).

59

Term Description
Resource A resource is something that can be managed by Kubernetes. It defines

an API endpoint on the master node and allows Kubernetes to store a
collection of such API objects. Examples are: Deployment, Service
and Pod, to name a few of the built-in resources.

CRD A Custom Resource Definition (CRD) enables developers to extend the
default Kubernetes API. With a CRD, it is possible to create own
resources which create an API endpoint on the Kubernetes API. An
example of such a CRD is the Mapping resource of Ambassador22.

Operator An operator is a software that manages Kubernetes resources and their
lifecycle. Operators may use CRDs to define custom objects on which
they react when some event (Added, Modified or Deleted) triggers on
a resource. For a more in-depth description, see Section 2.3.

Watcher A watcher is a constant connection from a client to the Kubernetes
API. The watcher defines some search and filter parameters and
receives events for found resources.

Validator A validator is a service that may reject the creation, modification or
deletion of resources.

Mutator Mutators are called before Kubernetes validates and stores a resource.
Mutators may return JSON patches RFC6902 [22] to instruct
Kubernetes to modify a resource prior to validating and storing them.

22https://www.getambassador.io/

60

https://www.getambassador.io/

Appendix B: Installation of the PoC

This section shows how to install the case study locally. The installation guide is also
hosted on GitHub (https://github.com/WirePact/wirepact-poc). The installation
consists of the operator and the case study with three application parts. To access the
application, Ambassador acts as API gateway.

To begin the installation of the PoC, a Kubernetes environment is needed. On Windows
and Apple devices, Docker Desktop with Kubernetes23 is recommended. Other environ-
ments, for example minikube24, work as well. The next step is to install Ambassador as
API gateway with the shell script ./Kubernetes/case-study/install-ambassador.sh.
On Windows, the Subsystem for Linux or the git bash can be used to execute the shell
script. Otherwise, the PowerShell can be used to execute the kubectl commands in the
shell script one by one.

For the last step, the Kustomize25 executable is required. Change into the Kubernetes
directory and run kustomize build to see the output of the kustomization.yaml
file or kustomize build | kubectl apply -f - to build and directly apply the re-
sult to Kubernetes. This installs the operator and the case study. When every-
thing is set up, the frontend application can be accessed via https://localhost,
https://kubernetes.docker.internal, or https://kubernetes.local depending on
the host’s config of the machine.

To be able to log in into the frontend application, any ZITADEL account may be used.
It does not matter if the account is bound to an organization or resides in the global
organization.

23https://docs.docker.com/desktop/kubernetes/
24https://minikube.sigs.k8s.io/docs/start/
25https://kustomize.io/

61

https://github.com/WirePact/wirepact-poc
https://docs.docker.com/desktop/kubernetes/
https://minikube.sigs.k8s.io/docs/start/
https://kustomize.io/

Appendix C: Teaching Material for Kubernetes Operators

Motivation

There is a variety of Kubernetes Operators. For example, the Prometheus Operator26

which manages instances of Prometheus27 in Kubernetes. A non-exhaustive list of
Operators can be found on https://operatorhub.io. An Operator is not required to
perform only one task.

Since Operators are an elegant tool to extend the capabilities of Kubernetes, developers
may want to know how to create a custom Operator. This material gives an overview of
the Operator pattern and a description of how Operators work. As an exercise, a custom
Operator must be written with the help of an SDK. The solution to the custom Operator
is implemented with C# and the .NET Operator SDK “KubeOps”28.

Learning Objectives

The Operator pattern29 extends Kubernetes in a specified way [3]. One can extend the
API of Kubernetes with custom resources and react to events of the resources. To be
able to implement a custom Operator, the building blocks and concepts of the internal
elements of an Operator must be known. An SDK helps to create an Operator, but when
the Operator gets more complex, it may be vital to know how Operators work. Therefore,
this material shows how an Operator works and how one can be built.

To summarize the learning objectives:

• One can explain the operator pattern and their parts with own words
• One can compare the pattern with alternative solutions
• One can build a custom operator with an SDK

Kubernetes Operators and their Use

What is an Operator?

An Operator is a piece of software that is designed to automate management of other
software. It typically manages the lifecycle of another application [3]. As an example,
the above-mentioned “Prometheus Operator” manages the lifecycle of “Prometheus.”
Normally, to fulfil their duty, Operators extend the API of Kubernetes by adding custom
resource definitions.

26https://github.com/prometheus-operator/prometheus-operator
27https://prometheus.io/
28https://github.com/buehler/dotnet-operator-sdk
29https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

62

https://operatorhub.io/
https://github.com/prometheus-operator/prometheus-operator
https://prometheus.io/
https://github.com/buehler/dotnet-operator-sdk
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

Figure C.1: The Kubernetes reconciliation loop. It can be compared to a basic feedback
controll system that reacts based on system output with a controller [23].

To describe the “reconciliation loop” of an Operator, we consider Figure C.1. The
reconciliation loop is the constant observation of the current state. When the current
state diverges from the desired state, adjustments must be made to achieve the current
state again. This loop is used by the Kubernetes API itself. As an example, if a user
creates a deployment in Kubernetes, the API stores the deployment as the new desired
state. The reconciliation loop checks if the deployment exists, and if it does not, it creates
the deployment to reach the desired state.

Figure C.2: Kubernetes Operator Pattern

63

The Operator pattern uses the reconciliation loop to manage a custom application or a
custom use case. The pattern is shown in Figure C.2. When a user modifies resources (be
it custom resources or predefined ones), the API stores the resources as the new desired
state. The Operator gets notified by the API and can adjust elements in Kubernetes.

The Operator pattern can be used to manage entire applications, for example Prometheus
or PostgreSQL database servers. Another use case of an Operator could include injecting
logging collectors into each deployment in the cloud environment.

How do Operators work?

Figure C.3: Parts of an Operator and their Interaction with Kubernetes

Considering Figure C.3, the following objects exist in or around an Operator:

• Watcher30: The Operator registers one or multiple watchers with the Kubernetes
API. This enables the Operator to receive events when a watched resource gets
modified. A watcher can be namespaced or global and can watch one type of
resource (e.g. Deployments, Services, or a custom resource).

• Event31: Events are the notification of the Kubernetes API that a watcher receives.
Three relevant types of events exist:

30https://kubernetes.io/docs/reference/using-api/api-concepts/#efficient-detection-of-changes
31https://kubernetes.io/docs/reference/using-api/api-concepts/#efficient-detection-of-changes

64

https://kubernetes.io/docs/reference/using-api/api-concepts/#efficient-detection-of-changes
https://kubernetes.io/docs/reference/using-api/api-concepts/#efficient-detection-of-changes

– Added: When a resource gets added to the watcher. This event is fired for
each resource of the watched type when the watcher is registered.

– Modified: When a resource that is already being watched gets modified.
– Deleted: When a watched resource is removed from Kubernetes and the

watcher.

• Custom Resource Definition32: A CRD defines non-standard objects that
extend the API of Kubernetes. There exist resource definitions for all standard
resources like deployments and services. A CRD enables developers to create
custom resources which can be reconciled by an Operator.

• Controller33: Controllers are elements in an Operator that reconcile a specific
CRD/resource. An Operator can contain multiple controllers and therefore manage
multiple CRDs. A controller typically contains application logic to react to the
events of the Kubernetes API.

• Finalizer34: A finalizer is a part of an Operator that enables asynchronous deletion
processes in Kubernetes. When a resource contains finalizers in its metadata, the
API will mark the resource as in pending deletion. An Operator may react to this
state and can perform additional tasks, such as deleting a database or external
resources. The Operator must then remove its finalizer entry. When all finalizers
are removed, the resource is deleted. Otherwise, it will remain in the pending
deletion state.

• Mutation Webhook35: A mutator (or mutation webhook) is an HTTP endpoint
of an Operator. The endpoint will be called whenever a watched resource type is
created/updated/deleted. A mutator may return an empty response to acknowledge
the creation/modification/deletion of the resource, or it can patch the resource
before the effective action is executed. The patch must be in the form of a JSON
Patch, as defined in RFC6902 [22]. As an example, one could create a profanity
filter and remove “bad” usernames from resources. Mutators are called in series
by the Kubernetes API.

• Validation Webhook36: In contrast to a mutation webhook, a validator (or
validation webhook) may only accept or reject a resource. If multiple validators are
registered for a certain type, they will be called in parallel by the Kubernetes
API.

32https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
33https://kubernetes.io/docs/concepts/architecture/controller/
34https://kubernetes.io/blog/2021/05/14/using-finalizers-to-control-deletion/
35https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
36https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/

65

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/architecture/controller/
https://kubernetes.io/blog/2021/05/14/using-finalizers-to-control-deletion/
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/

Figure C.4: Kubernetes Operator Workflow

To specify the general workflow in Figure C.2 in more detail, Figure C.4 depicts the
concrete sequence of a reconciliation loop. An important note on admission webhooks
(mutators/validators): if the Operator does not respond within ten seconds, the API will
abort the creation/modification/deletion of the resource. This could lead to deadlocks
when the Operator crashes or is not able to respond to the webhooks.

What is an Operator SDK?

To help developers create custom Operators, SDKs provide the abstractions to perform
the Kubernetes specific tasks. Depending on the SDK, several technical elements are
abstracted like registering and error handling of the watchers. A non-exhaustive list of
SDKs includes:

• KUDO37: A declarative Operator SDK that creates Operators based on declarative
descriptions.

37https://kudo.dev/

66

https://kudo.dev/

• kubebuilder38: A GoLang based SDK that allows creating controllers and validation
webhooks.

• OPERATOR SDK39: A multi-language SDK that allows GoLang based Operators,
Helm based Operators, or Ansible based Operators by using hooks to execute
scripts.

• Shell-operator40: Event driven script runner for Kubernetes. Operator SDK for
shell scripts.

• Kopf41: “Kubernetes Operator Framework (Kopf),” is a Python based SDK with
an immense feature set.

• KubeOps42: A .NET Operator SDK based on the principles of ASP.NET applica-
tions. Operators can be created with C# or F#.

Exercise: Create a Custom Operator with an SDK

TL;DR

1. Create an empty Operator with the KubeOps SDK and run it.
2. Create a CRD for a “WeatherLocation” and for “WeatherData.”
3. Create the controllers for the CRDs and run/deploy the Operator. The use case is:

The user can create a WeatherLocation object and the Operator should then fetch
any weather data API and create WeatherData objects for each hour. When a
specific amount of WeatherData elements are created, old objects must be deleted.

The examples and solutions are created with KubeOps in C#. When code is shown,
the required “usings” are omitted. A possible solution can be found on GitHub: https:
//github.com/buehler/kubernetes-operator-exercise.

Create and Run an empty Operator

Select an SDK and create an empty Operator and run it against a Kubernetes environment.
One can use any Kubernetes environments, but it is advised to use a local instance like
Docker Desktop with Kubernetes or minikube.

Solution KubeOps provides templates to create an Operator.

1. Install the templates: dotnet new -i KubeOps.Templates::*

38https://book.kubebuilder.io/
39https://operatorframework.io/
40https://github.com/flant/shell-operator
41https://kopf.readthedocs.io/en/stable/
42https://buehler.github.io/dotnet-operator-sdk/

67

https://github.com/buehler/kubernetes-operator-exercise
https://github.com/buehler/kubernetes-operator-exercise
https://minikube.sigs.k8s.io/docs/start/
https://book.kubebuilder.io/
https://operatorframework.io/
https://github.com/flant/shell-operator
https://kopf.readthedocs.io/en/stable/
https://buehler.github.io/dotnet-operator-sdk/

2. Create the empty Operator: dotnet new operator-empty -n WeatherOperator
-o ./weather-operator

3. Run the empty Operator against the Kubernetes environment

You should see the following log output:

info: KubeOps.Operator.Leadership.LeaderElector[0]
Startup Leader Elector for operator "weatheroperator".

info: KubeOps.Operator.Leadership.LeaderElector[0]
There was no lease for operator "weatheroperator".
Creating one and electing "xxx" as leader.

info: Microsoft.Hosting.Lifetime[0]
Now listening on: http://localhost:5000

info: Microsoft.Hosting.Lifetime[0]
Now listening on: https://localhost:5001

info: Microsoft.Hosting.Lifetime[0]
Application started. Press Ctrl+C to shut down.

info: Microsoft.Hosting.Lifetime[0]
Hosting environment: Development

The empty Operator in C# only registers the Operator logic with ASP.NET and starts
the web server. The minimal config required to run consists of:

Program.cs:

static IHostBuilder CreateHostBuilder(string[] args) =>
Host.CreateDefaultBuilder(args)

.ConfigureWebHostDefaults(webBuilder =>
{

webBuilder.UseStartup<Startup>();
});

await CreateHostBuilder(args).Build().RunOperatorAsync(args);

Startup.cs:

public class Startup
{

public void ConfigureServices(IServiceCollection services)
{

services.AddKubernetesOperator();
}

public void Configure(IApplicationBuilder app)
{

68

app.UseKubernetesOperator();
}

}

Create the Custom Resource Definition

Create the required objects in the Operator and create the CRD for Kubernetes. The
CRD is the element that gets installed in the API of Kubernetes. The following two
objects must be created:

• WeatherLocation: Object that contains the required data to query a weather
API for weather data. As an example, if the OpenWeather API is used, the object
should include latitude and longitude to identify the point of interest. Depending
on the API you intend to use, you may need to add other fields.

• WeatherData: This object shall not be created by a user. It contains the “result”
for a weather query. It must be linked to a WeatherLocation and should be cleaned
up after 24 hours.

Solution WeatherLocation: To use the OpenWeather API, we only need the latitude
and the longitude to create a weather call.

public class V1WeatherLocationSpec
{

public double Latitude { get; set; }

public double Longitude { get; set; }
}

public class V1WeatherLocationStatus
{

public DateTime? LastCheck { get; set; }

public string? Error { get; set; }
}

[KubernetesEntity(
ApiVersion = "v1",
Group = "kubernetes.dev",
Kind = "WeatherLocation")]

[EntityScope(EntityScope.Cluster)]
public class V1WeatherLocation : CustomKubernetesEntity

<V1WeatherLocationSpec, V1WeatherLocationStatus>

69

https://openweathermap.org/api

{
}

WeatherData: This object should be created by the Operator during runtime. It contains
several elements of the weather call. The weather data object must be linked to a weather
location.

public class V1WeatherDataSpec
{

[AdditionalPrinterColumn]
public string MainWeather { get; set; } = string.Empty;

public string Description { get; set; } = string.Empty;

[AdditionalPrinterColumn]
public double Temperature { get; set; }

public DateTime Sunrise { get; set; }

public DateTime Sunset { get; set; }
}

[KubernetesEntity(
ApiVersion = "v1",
Group = "kubernetes.dev",
Kind = "WeatherData")]

[EntityScope(EntityScope.Cluster)]
public class V1WeatherData : CustomKubernetesEntity<V1WeatherDataSpec>
{
}

KubeOps generates the CRDs found in the repository at https://github.com/buehler/k
ubernetes-operator-exercise/tree/main/config/crds.

These CRDs may now be installed into Kubernetes with kubectl apply.

Reconcile the Custom Resource

As the Operator base and the CRDs are prepared, you are now to build the Operator
logic. The Operator must fulfill the following requirements:

• A weather API call is executed each hour for a given weather location object
• The result of the API call is stored in Kubernetes as weather data object and linked

to the weather location (owner reference)

70

https://github.com/buehler/kubernetes-operator-exercise/tree/main/config/crds
https://github.com/buehler/kubernetes-operator-exercise/tree/main/config/crds

• While reconciling, the Operator deletes old weather data objects (keep the last
twelve)

• A validator checks if the longitude and latitude values are possible and denies the
creation of the object if they are not within the boundaries

• A validator checks if a weather data object contains an owner reference

Solution Since it is not feasible to print the whole source code in this exercise, please
find a possible solution on GitHub: https://github.com/buehler/kubernetes-operator-
exercise.

71

https://github.com/buehler/kubernetes-operator-exercise
https://github.com/buehler/kubernetes-operator-exercise

	Declaration of Authorship
	Introduction
	Definitions and Clarification of the Scope
	Scope of the Project
	Kubernetes as an Orchestration Engine
	Introduction
	Terminology

	The Operator Pattern
	The Sidecar Pattern
	Controlling the Data with a Service Mesh
	Authentication, Authorization, and Security
	Basic Authentication (RFC7617)
	OpenID Connect (OIDC)
	Zero Trust Environment

	State of the Art and the Practice
	Accessing Legacy Systems from Cloud-Native Applications
	External Authentication and Identity Transport
	Missing Dynamic Credential Transformation

	Distributed Authentication Mesh
	Definition
	Goals and Non-Goals of the Project
	Differentiation from Security Assertion Markup Language
	Architecture of the Distributed Authentication Mesh
	Federated Identity with Diverging Authentication Schemes
	Conceptional Architecture
	Platform-Specific Example in Kubernetes

	Securing the Communication between Applications
	Implementation Proof of Concept (PoC)
	Case Study for the PoC
	Automation Engine for Applications
	Network and Routing Proxy for Communication
	Translator

	Evaluation
	Architecture against Requirements
	NFR 1: Improve Security
	NFR 2: Secure implementation
	NFR 3: Generic Usage
	NFR 4: Performance Impact
	NFR 5: Modularity
	NFR 6: Integration into Infrastructure
	NFR 7: Scalability
	NFR 8: Separation of Concerns
	NFR 9: No Data-Transfer
	NFR 10: Error Handling

	Leaking Credentials and Developer Experience

	Conclusions and Outlook
	Bibliography
	Appendix A: Common Kubernetes Terminology
	Appendix B: Installation of the PoC
	Appendix C: Teaching Material for Kubernetes Operators
	Motivation
	Learning Objectives
	Kubernetes Operators and their Use
	What is an Operator?
	How do Operators work?
	What is an Operator SDK?

	Exercise: Create a Custom Operator with an SDK
	TL;DR
	Create and Run an empty Operator
	Create the Custom Resource Definition
	Reconcile the Custom Resource

