
Trust in a Distributed Authentication Mesh∗

How to create trust and secure communication between distant
authentication meshes

Christoph Bühler

Spring and Autumn Semester 2022
Eastern Switzerland University of Applied Science (OST)

The “Distributed Authentication Mesh” is a concept to authenticate and
authorize an identity over multiple services that do not share an authentication
scheme [1]. The mesh uses a common identity to encode the authorization
information into a JSON Web Token (JWT) that is signed by a certificate
of the system [2]. The JWT is then used to authenticate the user at the
participating services. However, the current concept and implementation of
the mesh does not allow the trusted, secure communication between distant
trust zones.

This thesis analyzes the current state of the mesh and provides a solution
to spread the “Distributed Authentication Mesh” over multiple trust zones
and environments. The project analyzes several possibilities to form a trust
contract between trust zones of the mesh. After the analysis, a contract is
designed and implemented. The contract is then used to distribute the mesh
over multiple trust zones and allow secure communication between the zones.
The thesis also provides a working demo setup of the mesh that can be used
to validate the concept. The conclusions of the thesis provide a detailed
summary of the project and possible extensions to the mesh in follow-up
work.

∗I would like to express my appreciation to Mirko Stocker for guiding and reviewing this work. Further-
more, special thanks to Florian Forster, who provided the initial inspiration and technical expertise of
the topic.

1

Contents

Declaration of Authorship 4

1 Introduction 5

2 Definitions and Clarification of the Scope 7
2.1 Scope of this Project . 7
2.2 Introduction into Kubernetes . 7

2.2.1 Basic Terminology . 8
2.2.2 What is an Operator . 9
2.2.3 What is a Sidecar . 10

2.3 Introduction into Security, Trust Zones, and Secure Communication . . . 11
2.3.1 The CIA Triad . 11
2.3.2 Trust Zones and Zero Trust . 12
2.3.3 Securing Communication between Parties 12

2.4 Introduction into the Distributed Authentication Mesh 15
2.4.1 Accessing Legacy Software with Cloud-Native Applications 15
2.4.2 The Contrast to Security Assertion Markup Language 16
2.4.3 The Concept of Distributed Authentication 17

3 The State of Distributed Authentication 19
3.1 The Distributed Authentication Mesh in a Single Trust Zone 19
3.2 Multiple Trust Zones and Distribution . 20
3.3 Contracts for Distribution . 21

4 Creating a Trust Context for the Authentication Mesh 23
4.1 Additional Requirements . 23
4.2 Sign and Distribute Contracts between Participants 23

4.2.1 Using a Blockchain . 24
4.2.2 Using a Master Node . 27
4.2.3 Using a Git Repository . 28

4.3 Define the Contract . 29

5 Implementing the Contract Repository 31
5.1 The Rust Programming Language . 31
5.2 Demo Applications . 32
5.3 Implementing a Contract Repository . 34

5.3.1 Provide a High-Performance API for Contracts 34
5.3.2 Administrate Contracts via Graphical Web Interface 36

5.4 Implementing a Contract Provider . 38
5.5 Create Secure Communication between Services 40
5.6 A Trusted Distributed Authentication Mesh 42

2

6 Conclusions and Outlook 46

Bibliography 48

List of Figures

1 Multiple Trust Zones with Contract . 5
2 Basic Buildingblocks in Kubernetes . 8
3 Interaction of the Distributed Authentication Mesh Operator in Kubernetes 10
4 An Example of a Sidecar . 11
5 OpenID Connect (OIDC) Authorization Code Flow 13
6 The mTLS Handshake for Client and Server 14
7 The Problem with Diverging Authentication Mechanisms 15
8 Abstract Architecture of the Distributed Authentication Mesh 17
9 Outbound Networking Sequence . 18
10 Distributed Authentication Mesh in Single Trust Zone 19
11 Network Architecture in the Distributed Authentication Mesh 20
12 Distributed Authentication Mesh with Multiple Trust Zones 21
13 Creating Trust with a Contract . 22
14 Basic Principle of a Blockchain . 24
15 Blockchain Smart Contract between PKIs 25
16 Decentralized Public Key Infrastructure on Blockchain 26
17 Centralized Trust Manager for Participants 27
18 Use Git Repository for Trust Management 28
19 Trust Contract between PKIs . 29
20 Use-cases for the Contract Repository . 35
21 Provider fetching relevant contracts from the repository 35
22 Activity of the provider during each interval 38
23 The Contract Repository and the Trust Zones 41
24 Trust Zone Alice . 42
25 Trust Zone Bob . 43
26 Communication between Trust Zones . 44
27 mTLS Connection between Proxies . 44
28 Multiple Trust Zones in a Distributed Authentication Mesh 46

3

Declaration of Authorship

I, Christoph Bühler, declare that this MASTER THESIS titled “Trust in a Distributed
Authentication Mesh” and the work presented in it are my own.

I confirm that:

• Where I have consulted the published work of others, this is always clearly attributed.
• Where I have quoted from the work of others, the source is always given. Except

for such quotations, this MASTER THESIS is entirely my own work.
• I have acknowledged all main sources of help.
• Where the MASTER THESIS is based on work done by myself jointly with others,

I have made clear exactly what was done by others and what I have contributed
myself.

Gossau SG, January 23, 2023

Christoph Bühler

4

1 Introduction

The concept of the “Distributed Authentication Mesh” [1] creates a foundation for
dynamic authentication and authorization with diverging authentication schemes. Further,
“Common Identities in a Distributed Authentication Mesh” [2] defines and implements
the common identity that is transported between services. The mentioned projects show
with their respective Proof of Concepts (PoC), that it is possible to authenticate a specific
identity and transfer it to other applications that do not share the same authentication
mechanism.

However, both projects are only distributed within the same trust zone1. While still
allowing the “zero trust”2 principle, the projects do not enable true “distribution”.

In the current state, applications within the same trust zone can communicate with
each other and a user only needs to enter his credentials, such as a username/password
combination, once. When the user is authenticated, the identity (user ID) is encoded
in a JSON Web Token (JWT) that is attached to outgoing calls. The receiving party
can validate the JWT and verify that the user is authenticated. Then the receiver uses
the transmitted information to encode the identity in the corresponding authentication
scheme of the destination [1], [2].

Figure 1: Multiple trust zones that share a contract between them. The contract enables
the authentication mesh to verify callers from other zones.

To achieve true distribution, a contract, as shown in Figure 1, must exist. The contact
defines how multiple trust zones can share trust with each other. This project shall
define and implement the contract between multiple meshes, such that the Distributed
Authentication Mesh can communicate with other trusted zones. To complement the

1A space where applications can “trust” each other.
2Assuming that each call can be compromised, so all presented credentials must be verified for each call.

5

conceptual addition, an open-source implementation of the contract and its components
is provided. To demonstrate the contract and the distribution of the authentication, a
Proof of Concept (PoC) with Docker is created.

The remainder of this thesis describes prerequisite knowledge, used technologies, and
other topics that are required to understand the work. Section 3 describes the Distributed
Authentication Mesh project and which elements are missing for the true distribution
between security contexts. Within Section 4, the techniques to create a contract between
distant parties is analyzed and then, the contract is defined. The implementation section,
Section 5, implements the contact along with other software needed for the working
software. The conclusion then gives an overview of the results and provides an outlook
into future work.

6

2 Definitions and Clarification of the Scope

This section provides the scope, context, and prerequisite knowledge for this thesis. It
also gives an overview of the technologies used as well as an introduction to the security
topic of the project. Note that a deeper introduction into other security-related topics is
given in the implementation section.

2.1 Scope of this Project

This project builds upon the prior projects “Distributed Authentication Mesh” [1] and
“Common Identities in a Distributed Authentication Mesh” [2]. The past work defined a
general concept for distributed authentication [1] and the definition and implementation
of a common identity that is shared between the applications in the mesh [2].

The goal of this project is to achieve a truly distributed mesh. To reach a distributed
state in the mesh and to be able to trust other trust zones, a contract between each zone
must exist. This project defines and implements the contract and provides the tools
necessary to run such a mesh in a Proof of Concept. In this project, we analyze different
options to form a contract between distant parties and define the specific properties of
the contract. After the analysis and definition, an open-source implementation shall show
the feasibility and the usability of the Distributed Authentication Mesh.

Service mesh functionality, such as service discovery, is not part of the authentication
mesh nor of this project. While the authentication mesh can run alongside a service mesh,
it must not interfere with the resolution of the communication. The applications that are
part of the mesh must be able to respect the HTTP_PROXY and HTTPS_PROXY variables.
Past work has introduced a Kubernetes Operator, which will inject those variables into
the application. This technique allows the mesh to configure a local sidecar as the proxy
for the application. However, the concept of the mesh or this thesis does not rely on
Kubernetes.

2.2 Introduction into Kubernetes

Since the provided implementation of the Distributed Authentication Mesh is able to run
on Kubernetes, this section gives a brief overview of Kubernetes and the used patterns.
The PoC of this thesis runs purely in Docker, but past work created a Kubernetes
Operator that allows running the mesh in a Kubernetes Cluster. Kubernetes is an
orchestration system that can distribute tasks on several nodes (servers). The explained
patterns allow developers to extend the basic Kubernetes functionality.

7

2.2.1 Basic Terminology

To understand further concepts and Kubernetes in general, some basic terminology and
concepts around Kubernetes must be understood.

Figure 2: Basic Buildingblocks in Kubernetes

A Pod is the smallest possible deployment unit and contains a collection of application
containers and volumes [3, Ch. 5]. Figure 2 shows a Pod that contains two containers.
Containers are definitions for workloads that must be run. To enable Kubernetes to run
such a container, a containerized application and a container image must be present.
Such an image-format is “Docker”3, a container runtime for various platforms.

Deployments manage multiple Pods. A Deployment object manages new releases and
represents a deployed application. They enable developers to move up to new versions of
an application [3, Ch. 10]. In Figure 2, a Deployment contains the Pod which in turn
holds containers. There exist multiple deployment specifications, such as Deployment
and Stateful Set which have their own use-cases depending on the specification.

A Service makes ports in Pods accessible to the Kubernetes world. They provide service
discovery via Kubernetes internal DNS services [3, Ch. 7]. The service in Figure 2 enables
access to one of the containers in the Pod. A service load balances access if multiple
containers match the service description.

3https://www.docker.com/

8

https://www.docker.com/

Ingress objects define external access to objects within Kubernetes. Kubernetes uses
“Ingress Controllers” that configure the access to services and/or containers [3, Ch. 8].
As an example, “NGINX”4 is an ingress controller that is popular. When an Ingress
is configured to allow access to the service in Figure 2, NGINX is configured that the
respective virtual host forwards communication to the given service (reverse-proxying).

2.2.2 What is an Operator

Site Reliability Engineering (SRE) is a specific software engineering technique to automate
complex software. A team of experts uses certain practices and principles to run scalable
and highly available applications [4]. The “Operator pattern” provides a way to automate
complex applications in Kubernetes. An Operator embodies the knowledge of SRE teams
in software to automate certain tasks [5].

An Operator makes use of “Custom Resource Definitions” (CRD) in Kubernetes. These
definitions extend the Kubernetes API with custom objects that can be manipulated
by a user of the Kubernetes instance [3, Ch. 16]. The Operator “watches” for events
regarding objects in Kubernetes. The events can contain the creation, modification, and
deletion of such a watched resource. As an example, the “Postgres”5 database operator
reacts to the Postgres custom entity. When such an entity is created within Kubernetes,
the Operator starts and configures the Postgres database system.

4https://www.nginx.com/
5https://www.postgresql.org/

9

https://www.nginx.com/
https://www.postgresql.org/

Figure 3: Interaction of the Distributed Authentication Mesh Operator in Kubernetes

In the Distributed Authentication Mesh, an Operator is used to automatically include
a deployment into the mesh and configure the corresponding services accordingly. The
original application is enhanced with several sidecar containers. As Figure 3 shows, the
Operator injects the credential translator and the Envoy6 proxy into the application
(Deployment) and modifies the ports of the service to target the Envoy proxy [1].

2.2.3 What is a Sidecar

A Sidecar is an extension to an existing Pod. Some controllers (for example an Operator)
can inject a Sidecar into a Pod or the Sidecar gets configured in the Deployment in the
first place. [6]

6https://www.envoyproxy.io/

10

https://www.envoyproxy.io/

Figure 4: An Example of a Sidecar

Figure 4 shows an example of a Sidecar. An application runs a Pod and writes log
messages to /var/logs/app.log in the shared file system. A specialized “Log Collector”
Sidecar can be injected into the Pod and read those log messages. Then the Sidecar
forwards the parsed logs to some logging software like Graylog7.

Sidecars can fulfil multiple use-cases. A service mesh may use Sidecars to provide proxies
for service discovery. Logging operators may inject Sidecars into applications to grab
and parse logs from applications. Sidecars are a symbiotic extension to an application [3,
Ch. 5].

2.3 Introduction into Security, Trust Zones, and Secure Communication

The Distributed Authentication Mesh is a security application. Therefore, security is an
important topic in this work. This section gives an overview of the relevant topics to
understand further security related concepts. More in-depth knowledge is provided in
Section 5.

2.3.1 The CIA Triad

The three pillars of information security: Confidentiality, Integrity, and Availability.
These three elements form the foundation of security in information systems. The CIA
triad is, even though that it was first mentioned around the year 1980, still relevant for
security practitioners and in general security management [7].

Confidentiality addresses the topic of gaining access where one is not allowed to. If
someone can read certain information without being authorized to do so, confidentiality

7https://www.graylog.org/

11

https://www.graylog.org/

is breached. An example could be that some attacker is able to forge login credentials
and thus has access to files they should not be able to see.

Integrity covers proving that some information was not modified. When an attacker
can modify information in a system, even when the attacker is not able to read the
information, the integrity of the information is compromised. For example, with a man
in the middle (MITM) attack, the integrity of the communication is corrupted, and the
attacker may forge or change information that the users are sending/receiving [8].

Availability handles the possibility to get the information from the particular system.
If an attacker can prevent an authorized user from gaining access to their information,
the availability is impaired. This could happen if an attacker uses a DDoS (distributed
denial of service) attack to prevent access to a resource.

2.3.2 Trust Zones and Zero Trust

Trust zones are the areas where applications “can trust each other”. When an application
verifies the presented credentials of a user and allows a request, it may access other
resources (such as APIs) on the users’ behalf. When the concept of trust zones is applied,
other APIs may trust the original requester that the identity has authenticated itself.
Typically, this is used in microservice architectures where only one point of access (the
gateway into the zone) is exposed to the outside world. The APIs behind the application
can then share the trust that the gateway created.

In contrast to trust zones, “Zero Trust” is a security model that focuses on protecting
(sensitive) data [9]. Zero trust assumes that an attacker could intercept every call. Thus,
for the concept of zero trust, it is irrelevant if the application resides in an enterprise
network or if it is publicly accessible. As a consequence of zero trust, user credentials
must be presented and validated for each access to a resource [10].

2.3.3 Securing Communication between Parties

The key focus of the Distributed Authentication Mesh is the possibility to provide a
secured identity over a service landscape that has heterogeneous authentication schemes
[1]. Thus, securing communication between participants is of utmost importance. A
wide range of security mechanisms and authentication schemes exist. To demonstrate
the Distributed Authentication Mesh and the contracts between the trust zones, the
following schemes/techniques are used.

12

2.3.3.1 HTTP Basic Authentication The “Basic” authentication scheme is defined
in RFC7617. Basic is a trivial authentication scheme which provides extremely low
security when used without HTTPS. Even with HTTPS, Basic Authentication does not
provide solid security for applications. It does not use any real form of encryption, nor
can any party validate the source of the data. To transmit basic credentials, the username
and the password are combined with a colon (:) and then encoded with Base64. The
encoded result is transmitted via the HTTP header Authorization and the prefix Basic
[11].

2.3.3.2 OpenID Connect OpenID Connect (OIDC) is not defined in an RFC. The
specification is provided by the OpenID Foundation (OIDF). OIDC extends OAuth,
which is defined by RFC6749. The OAuth framework only defines the authorization
part and how access is granted to data and applications. OAuth does not define how the
credentials are transmitted [12].

Figure 5: OIDC code authorization flow [13]. Only contains the credential flow, without
the explicit OAuth part. OAuth handles the authorization whereas OIDC
handles the authentication.

Figure 5 shows an example where a user wants to access a protected application. The user
is forwarded to an external login page (Identity Provider) and enters his credentials. When
they are correct, the user gets redirected to the web application with an authorization

13

code. The code is used to fetch an access and ID token for the user. These tokens identify,
authenticate, and authorize the user. The application is now able to provide the access
token to the API. The API itself can verify the presented token to validate and authorize
the user.

2.3.3.3 Mutual Transport Layer Security (mTLS) An mTLS connection is essentially
a TLS connection, like in HTTPS requests, but both parties present an X509 certificate.
The connection is only allowed to open if both parties present a valid and trusted
certificate. Thus, it enables both parties to verify their corresponding partner and
prevents man in the middle attacks [14].

Figure 6: The mTLS Handshake for Client and Server

To establish an mTLS connection, the TLS handshake defined in RFC5246 is used.
Figure 6 shows such a handshake. The client sends its Client Hello and is then greeted
by the server with a Server Hello response. The server response also includes the
server’s certificate to authenticate itself. The server requests a certificate from the client
in the same response. The client can then verify the certificate of the server and returns
its own certificate with other TLS related messages. When both parties verify the identity
of the other party, the handshake is completed, and the connection is established [15].

14

The biggest advantage of mTLS is that both parties can verify the identity of the other
party. Thus, it is not possible to impersonate a client or a server.

2.4 Introduction into the Distributed Authentication Mesh

The concept of the “Distributed Authentication Mesh”, as described in [1], is a practical
attempt to share authentication information in a distributed environment. With modern
cloud environments, like Kubernetes or Docker, some problems like discovery of services
and data transfer are solved in general [3, Ch. 7]. Modern cloud-native applications
(CNA) still must deal with authentication. Legacy software, however, often only supports
older authentication schemes. But with the current state of digitalization, they tend to be
moved into the cloud as well. This leads to the issue of mismatching authentication, as the
old authentication schemes are not compatible with the new cloud-native applications.

2.4.1 Accessing Legacy Software with Cloud-Native Applications

The Distributed Authentication Mesh addresses the conversion of user credentials from
one authentication scheme to another. When multiple services or applications with
diverging authentication schemes are required to communicate, the credentials (such as
access tokens or user/password combinations) need to be translated.

Figure 7: The Problem with Diverging Authentication Mechanisms

15

Figure 7 shows an example: a service with the capability of handling OIDC access tokens
wants to communicate with a legacy service that is only able to handle HTTP Basic
Authentication. Either software is required to receive a change in code to be able to
communicate with the other one.

To translate this into a real-world example: a legacy customer relationship management
(CRM) system, which has its own web GUI as well as an API is deployed on a Kubernetes
cluster. The API can handle HTTP Basic Authentication but no modern schemes.
The company in question created a modern web application that supports OIDC. The
company already has an Identity and Access Management (IAM) system deployed and
uses the IAM for other applications as well. The modern web application communicates
with a modern API that understands OIDC but then must fetch some data about a
customer from the legacy CRM system. The legacy CRM system is not able to handle
OIDC and thus the modern API must translate the OIDC access token into an HTTP
Basic Authentication header.

For several reasons like budget, time or technical risks and skill availability, legacy
applications are not always refactored before they are deployed into the cloud. Following
the assumption about the reasons, the code change will most likely be introduced into
the modern application, because it is presumably better maintainable and deployable
than the legacy software. The modern software now receives changes that are not part
of its core functionality and may introduce new bugs and security vulnerabilities. In
small applications that consist of one or two services, implementing this conversion may
be a feasible option. However, in large scale applications with several services, this is
error-prone and time-consuming work. In practice, the stated scenario was encountered
at various points in time. Legacy services may not be the primary use-case. Another
example is the usage of third-party applications without any access to the source code.

2.4.2 The Contrast to Security Assertion Markup Language

“Security Assertion Markup Language” (SAML) is a Federated Identity Management
(FIdM) standard. In modern applications, SAML, OAuth, and OIDC are the most
popular FIdM standards. SAML is an XML framework for transmitting user data, such
as authentication, entitlement, and other attributes, between services and organizations
[16].

In contrast to SAML, the Distributed Authentication Mesh does not require any changes
to the software. SAML does not cover the case when the authentication mechanisms
do not match. In order for SAML to work, all participating applications and services
need to be able to understand SAML. The same goal could be achieved if all services
would understand OIDC. The concept of the authentication mesh is built around already
deployed software. This allows the translation of the authentication method without any
changes to the applications.

16

2.4.3 The Concept of Distributed Authentication

The architecture of the Distributed Authentication Mesh is not bound to a specific
platform or a specific implementation. It is not bound to cloud environments as well.
The concept is generalized and can be implemented in all digital environments [1].

Figure 8: Abstract Architecture of the Distributed Authentication Mesh

Figure 8 shows the abstract solution architecture of the original authentication mesh
in [1]. There are several objects that support the general solution like a public key
infrastructure and a config and secret storage. An optional operator can automate
managing the additional software parts of the mesh.

17

The main part of the concept evolves around the proxies that are attached to deployed ap-
plications. An application service is composed of three parts. The service (application), a
translator that manages the transformation between the common identity and the specific
authentication information, and a proxy that is responsible for the communication.

The communication between the instances is handled by the proxies. The proxies
communicate with the translators to transform the credentials and modify HTTP headers
in requests. However, the mesh must not interfere with data communication. Handling
errors on the data plane is not part of the mesh and must be done by the implementation
of the proxy.

Figure 9: Outbound Networking Sequence

In Figure 9 the outgoing communication flow is depicted. When a source wants to
communicate with another service, the communication is routed through the proxy and
the proxy forwards the HTTP headers to the translator. The translator in turn transforms
the credentials and returns a modification instruction to the proxy. The proxy then
attaches the modified HTTP headers to the request and forwards it to the destination.
The result of the call is then returned to the source [1].

18

3 The State of Distributed Authentication

This section briefly explains the concept of the Distributed Authentication Mesh in a
single trust zone. Further, it shows the current state of the mesh, and describes the
deficiencies that this project solves.

3.1 The Distributed Authentication Mesh in a Single Trust Zone

The concept “Distributed Authentication Mesh”, as described in [1], allows applications
to communicate with each other, even if they do not share the same authentication
schemes.

Figure 10: Two applications can communicate with an API, despite the fact, that the
API only supports HTTP Basic authentication. The possibility to access
an API with diverging authentication schemes is the basic principle of the
Distributed Authentication Mesh [1].

Figure 10 shows the concept of the “Distributed Authentication Mesh”. Both applications
can communicate with the API, but they do not necessarily share the same authentication
and authorization mechanisms. The mesh provides the means to translate authentication
information into a common identity and transmit it to the receiving application. There,
the common identity is translated back into the required authentication credentials (an
HTTP Basic authorization header for example) [1].

19

Figure 11: Network Architecture in the Distributed Authentication Mesh

The “Distributed Authentication Mesh” builds upon the idea that a proxy acts as
mediator between source and destination. This proxy then uses an external service, the
“Translator”. The translator receives incoming and outgoing calls and has the ability to
modify the requests. However, it must not interfere with the data plane. It shall only
modify HTTP headers and allow or reject a connection. The translator can convert the
provided authentication information (if any) into a generic, predefined format.

The common identity is defined as a simple user ID. The ID is encapsulated into a JSON
Web Token (JWT) and then signed by the client certificate that the translator receives
from the PKI (public key infrastructure). The JWT is then sent to the destination
application where the JWT is parsed and validated. The ID is extracted from the JWT,
and the information can be translated into the corresponding authentication credentials
(for example, username/password combination for HTTP Basic) [2].

3.2 Multiple Trust Zones and Distribution

In its current state, the Distributed Authentication Mesh can run inside the same
trust zone with a shared common identity [1], [2]. The mesh handles the conversion of
authentication information (such as an access token or a login/password combination)
by transforming it into a shared format. A sender encodes the user ID in a JWT and
signs it with its own private key. The receiver can then verify that the information is not
modified and that the sender is part of the authentication mesh.

However, the connection between the participants is prone to attacks in multiple ways.
The concept only works if all applications of the mesh are within the same trust zone (for
example in the same Kubernetes cluster behind the same API gateway). If part of the
application runs on a different cluster, the same trust cannot be applied. An attacker
may get their own key material from a mesh PKI and then pose as a valid participant of

20

the mesh. Therefore, confidentiality and integrity are violated. Further, the receiving end
of the communication has no possibility to verify the sender of the message for certain.

Figure 12: Distributed Authentication Mesh with Multiple Trust Zones

The situation in Figure 12 shows the basic problem of the “Distributed Authentication
Mesh”. It is not truly distributed over multiple clusters and trust zones. It can only be
used within a single trust zone, as Figure 10 showed. The communication between the
application and the API could be intercepted by an attacker. An attacker could fetch its
own key material from either PKI and then pose as a valid member of the mesh since
the common identity only stores the user ID in the JWT [2].

3.3 Contracts for Distribution

To achieve true distribution in the authentication mesh, the mesh needs a possibility to
form trust between different trust zones. Various trust zones must establish contracts
between them that function as a trust anchor. Trusting another “zone” shall result in an
exchange of the public keys of their respective PKIs. With that contract, the mesh can
allow its participants to use mutual TLS (mTLS) instead of normal HTTP connections.
When mTLS is in place, sender and receiver of the communication can verify that they
communicate with the correct entity and thus can verify if a trust anchor between the
two exists.

21

Figure 13: Creating Trust with a Contract

Regarding Figure 13, a contract between the two trust zones creates the trust anchor
between the zones. This trust further allows the mTLS connection between the applica-
tions to be established. If the connection can be created (i.e. it is not rejected by either
side) the participants trust each other and are who they pretend to be.

22

4 Creating a Trust Context for the Authentication Mesh

This section gives a description of the required concept to create trust between distant
parties in the mesh. It further briefly describes considered technologies and their
limitations.

4.1 Additional Requirements

Past work has defined functional and non-functional requirements for the common identity
and the Distributed Authentication Mesh [1, Ch. 4], [2, Ch. 4]. The same requirements
hold for this work as well. However, the following requirements are added to the list of
requirements:

Additional functional requirements:

• The proxy, given it has the required key material, can create mTLS connections.
• The proxy has access to the public certificates of all participants he may communi-

cate with.
• Communication between the mesh participants is encrypted (even if in the same

trust zone).

Additional non-functional requirements:

• Without a contract, two trust zones cannot communicate with each other.
• Contracts only contain non-critical information.
• The contracts can be fetched by any participating contract provider.

Both functional and non-functional requirements extend the existing requirements and
still hold for the whole solution. The additional requirements allow the mesh to be
as secure as possible when communicating with participants from other trust zones.
Furthermore, they allow the mesh to encrypt communication within the same trust
zone.

4.2 Sign and Distribute Contracts between Participants

This section shows how a contract between two parts of the authentication mesh can be
created and distributed. To enable the authentication mesh to be truly distributed, the
PKI of each trust zone must have a contract to create trust between them. Since each
PKI creates its own root certificate, other PKIs must be able to verify and trust the root
CA of other PKIs.

23

4.2.1 Using a Blockchain

One possibility to create and share such contracts is the usage of Blockchain. Blockchain
and smart contracts allow participants to validate the transaction history of the chain
and therefore give a possibility to create trust between the parties.

Figure 14: Basic Principle of a Blockchain

4.2.1.1 Introduction into Blockchain The basic principle, stated in Figure 14, shows
how new blocks in the chain come to existence. The first block is called the “genesis
block” and has no information about any previous blocks. All blocks down the chain
contain information about the previous block. Along with the previous hash, each block
contains a hashed history of all transactions [17].

The transaction history is typically encoded in a Merkle tree, a data structure where all
leaf nodes are values of one-way functions. Merkle trees are often found in cryptography.
However, the Merkle tree has a particular downside: traversing the tree requires a large
amount of computation [18].

A blockchain allows transactions without the need for a third-party authority. The chain
itself achieves a consensus if a new block is valid or not. This enables smart contracts, a
technology that executes certain contract clauses when specified conditions are met. The
contracts and their specifics are published on a blockchain and can be verified by other
participants [19].

4.2.1.2 Using Blockchain to Create a Contract One viable way to create trust between
the arbitrary PKIs in the authentication mesh is the use of a smart contract. The PKIs
of the authentication mesh would be connected to a blockchain that spans over all
participants in the mesh.

24

Figure 15: Blockchain Smart Contract between PKIs

Figure 15 shows the necessary steps to form trust between two PKIs in the authentication
mesh. Since all operations are performed on a blockchain, the contract and the steps to
create it are verified by other participants as well.

With the smart contract, both parties can exchange their public key material and generate
a trust anchor between them without the need of a third-party authority. As soon as the
contract is voided by any of the parties, the trust anchor is revoked.

4.2.1.3 Using a Blockchain PKI to Create Certificates Another possibility to create
trust between the distributed participants of the authentication mesh is the usage of
a distributed PKI (dPKI). The distributed PKI would act as a mediator between the
different PKI that exist in each trust zone.

25

Figure 16: Using a Decentralized Public Key Infrastructure (dPKI) as root PKI to ensure
that all participants are able to create trust between them.

With a dPKI deployed on a blockchain, as shown in Figure 16, each specialized PKI in a
trust zone could request a certificate that acts as the root for the trust zone of that PKI.
The PKI fulfills its role as key material provider for the specific zone and has knowledge
about the other PKIs in the mesh through the blockchain. If two zones are to trust each
other, a configuration on the blockchain defines that two parties must create trust. Since
the specific PKIs already have the information about the other certificates, they can
validate the public key material of services in other zones.

An example of such a distributed PKI for blockchain is “ETHERST”. ETHERST is a
blockchain-based, distributed PKI that runs on the Etherium Virtual Machine (EVM)
and uses the internal currency of the EVM, Ether, as a payment method. However,
using the blockchain as PKI has the disadvantage of the gas fees. Gas fees are the
prices that need to be paid for each transaction on a blockchain. The participants of
the authentication mesh would need to pay the gas fees to request, sign, and trust a
certificate in ETHERST [20]. Since the gas fees are paid in Ether, the prices of the gas
fees are volatile and will change over time. This makes the usage of ETHERST as a PKI
for the authentication mesh unreliable.

4.2.1.4 Security Concerns with Blockchain When considering the CIA triad in Sec-
tion 2, only integrity and availability can be provided. No information that is published
in the blockchain is confidential and can be read by all participants in the chain.

26

While the blockchain approach seems elegant, it also bears some security issues. A
blockchain can be attacked by a “majority attack” where an attacker holds more than
51% of the computing power in the blockchain. If this happens, the next calculation for
the Proof of Work algorithm can be found faster than the rest of the network is able to
validate the calculation. Therefore, an attacker can decide which blocks are valid and
which are not [21]. There exist other issues and attack vectors, but the majority attack
would be the most threatening one for the Distributed Authentication Mesh.

Since September 2022, the Etherium blockchain changed from Proof of Work (PoW) to
Proof of Stake (PoS). PoS is a consensus algorithm that does not require the participants
to perform expensive calculations to validate a block. Instead, the participants stake a
certain amount of Ether to validate a block. The more Ether a participant stakes, the
more likely it is that the participant will be chosen to validate a block. This makes the
blockchain more secure against a majority attack, but also vulnerable against nothing at
stake or long-range attacks [22].

The nothing at stake attack allows a node to create conflicting blocks on all forks of the
chain without any risk of losing their stake. This attack targets the efficiency of the
system and slows the consensus time [22].

The long-range (or history) attack targets the history of the blockchain and tries to alter
it. The attack allows creating forks from past blocks and enables a takeover of the current
blockchain with a past majority stake [22].

4.2.2 Using a Master Node

A more centralized approach to form trust between participants is the usage of a master
node.

Figure 17: Centralized Trust Manager for Participants

27

Figure 17 shows the basic concept. While the trust zones remain decentralized, the
master node must be central to manage the trust between the PKIs. The master node
creates contracts between the PKIs of the participants. This could happen via API calls
or via configuration in a secure storage location. However, this creates a single point of
failure since the master node must also validate the trust. Trust revocation is done via
the master node as well. If the master node is the target of an attack, the whole trust
in the mesh is threatened. The master node is the single point of failure for inter-zonal
communication.

4.2.3 Using a Git Repository

A third option to establish contracts between PKIs in the authentication mesh is the
usage of a git repository. Git is a distributed version control system. It consists of a
central repository server and a set of clients that clone the repository locally [23].

Figure 18: Use Git Repository for Trust Management

The basic principle is depicted in Figure 18. A central git repository acts as distribution
node for contracts between the parties and therefore between the trust zones. The
contract is either created via some application or via manual creation by an administrator.
The contract is then pushed into the central repository. All participants can periodically
check for new or revoked contracts in the repository. A contract is only valid if the file is
physically present in the repository. To revoke a contract, the file is deleted from the
repository.

With a central repository, other security concerns arise. The repository is not crucial
for communication between participants, but it is relevant for the management of the

28

contracts. While a denial-of-service attack may not impact the communication itself,
it can disable the possibility to check for revoked contracts. Also, the history of the
repository could be a target for an attacker. If the attacker can alter the history of the
repository, the contracts could be altered as well.

4.3 Define the Contract

When considering the explained options in the previous sections, using a combination
between fetching contracts, and having a master access point is a solid compromise. It
does not require payment of blockchain gas fees nor the setup of a private blockchain.
Furthermore, it does provide the possibility to create and revoke contracts while not
being the single point of failure if the server does not respond for a certain time. However,
the central repository is not secure against denial-of-service attacks. Such attacks can
disable the possibility to check for contract updates.

The most basic information that is required in the trust contract is the public certificate
of the PKIs. The public certificate is the root certificate of the specific trust zone. When
both parties have the public key of the other party, they can verify certificates of the
other PKI and therefore are enabled to create mTLS (mutual TLS) connections. The
usage of mTLS in the authentication mesh does ensure that only trusted connections are
allowed and all other attempts to connect to a service are rejected. This further enables
the authentication mesh to guarantee that only trusted participants can send the custom
HTTP header that authenticates the user.

Figure 19: Trust Contract between PKIs

29

The contract between two parties is simple. As Figure 19 shows, the only part required
to form a contract is the public key of the respective partners. With the public key,
either PKI can verify the other PKIs certificates and thus allow an mTLS connection.
The contract can be extended in future work to enable other use-cases like rule-based
access control, a service-by-service trust, or other security features.

To enable serialization and to create a data scheme for the contracts, Protobuf8 is used.
Protobuf is a serialization format that defines the messages and calls in a proto file. The
format is used by gRPC9, a well-known RPC framework in microservice architecture. The
proto files can be used to create client implementations and server stubs for programming
languages.

message Participant {
string name = 1;
string public_key = 2;
string hash = 3;

}

message Contract {
repeated Participant participants = 1;

}

The proto definition above shows the structure of a contract. In principle, a contract is
just a list of participants that trust each other. A participant may be involved in multiple
contracts. All contracts that include the own participant, are fetched, and installed into
the local trust store. As soon as this is done, the Envoy proxy of the authentication mesh
can connect to distant services with an mTLS connection.

8https://developers.google.com/protocol-buffers
9Google Remote Procedure Call, https://grpc.io/

30

https://developers.google.com/protocol-buffers
https://grpc.io/

5 Implementing the Contract Repository

This section gives an overview of the created demo applications, the programming language
Rust, and security topics that are relevant for the implementation of the authentication
mesh. Furthermore, the section describes the implementation of the trust contract and
the relation to the authentication mesh.

5.1 The Rust Programming Language

To achieve the goals of this work, the programming language “Rust” provides a solid
base to implement the contract repository and other system relevant parts. Rust itself is
a multi-paradigm language that supports object-oriented features as well as functional
components. Rust further allows low-level memory management without the need for
garbage collection. Despite the absence of garbage collection, Rust guarantees memory
safety. To achieve it, Rust uses a special type checking mechanism that allows the
compiler to calculate the lifetime of references and the ownership of the data [24].

Since the compiler of Rust ensures that data can only be modified once and that code
has no side effects, the language enables developers to create reliable and secure software.
The strict compiler and the vast speed of the compiled results were the primary reasons
for choosing Rust as the programming language for this work. The Rust language has
comparable performance to C and C++ and is therefore suitable for fast reacting systems
like the authentication mesh [25].

With the calculation of ownership and the transfer of ownership, Rust ensures that data
can only ever be manipulated by one instance (its owner). No object can be modified
without specifically taking ownership. Even though Rust allows an unsafe keyword, the
code that it contains must be safe and is checked like normal Rust code. Ralf Jung et
al. proved this by giving formal safety proof for the language (and the unsafe parts in
its standard library) [26].

To demonstrate the advantages of Rust and its compiler, consider the following code
examples taken from the article “Safe Systems Programming in Rust” [27]:

std::vector<int> vec {10, 11};
// Create a pointer into the vector.
int *vectorPointer = &vec[1];
v.push_back(12);

// Bug ("use-after-free")
std::cout << *vectorPointer;

The C++ code above creates a vector of integers with two initial elements. Next, a
pointer to the second element in the growable array is created. When the additional
content (12) is added to the vector, the backing memory buffer may be reallocated to

31

allow the new object to be stored. The pointer now still points to the old memory address
and therefore is a “dangling pointer” [27].

let mut vec = vec![10, 11];
let vector_pointer = &mut vec[1];
vec.push(12);

// This creates a compile error, since the vector is moved.
println!("{}", *vector_pointer);

The Rust compiler does check usage of data and references statically and therefore does
not allow the use of a dangling pointer. The compiler will give the following error message
for the code above: “cannot borrow vec as mutable more than once at a time.” [27].

During this project, all existing elements of the Distributed Authentication Mesh were
rewritten to the Rust programming language. Since the communication between the
moving parts of the system uses gRPC to communicate, the framework or language
behind the system does not really matter.

5.2 Demo Applications

To demonstrate and test the implementation of the trust context and the mesh, multiple
demo applications are used. All applications are hosted on GitHub in the open-source
repository https://github.com/WirePact/demo-applications. There exist six different
applications that are described below.

The basic_auth_api is a simple API application written in Go10. It uses HTTP
Basic Authentication (RFC7617) to authenticate calls against its endpoints. The API
can be configured with three different environment variables (PORT, AUTH_USERNAME,
and AUTH_PASSWORD). An HTTP web framework package “Gin” provides the HTTP
middleware for Go.

router := gin.Default()
secure := router.Group("/", gin.BasicAuth(gin.Accounts{

config.Username: config.Password,
}))
secure.GET("swapi/people", getPeopleFromSwapi)
router.OPTIONS("/swapi/people", cors)

The code above shows the implementation of the HTTP Basic Authentication in the
Go application. The gin.BasicAuth function is used to create a middleware layer that
is applied to the secure group. The middleware checks the HTTP request for the
Authorization header and validates the credentials against the given accounts. The

10https://go.dev/

32

https://github.com/WirePact/demo-applications
https://github.com/gin-gonic/gin
https://go.dev/

named map gin.Accounts is a map that contains username / password combinations.
The getPeopleFromSwapi function is called if the authentication was successful.

The static website basic_auth_app provides a trivial way of accessing any basic
protected API. The site runs within an NGINX and contains minimal code. Since this
site is hosted statically and does not call API endpoints through some backend logic,
it is not possible to adhere to the HTTP(S)_PROXY environment variable to route traffic
through a specific proxy.

In contrast to the basic auth app, the basic_auth_backend_app is an ASP.NET appli-
cation that also uses the HTTP Basic mechanism to authenticate requests. However, the
application runs in an ASP.NET context. Thus, it is possible to respect the HTTP_PROXY
and HTTPS_PROXY variable and route traffic through a specific proxy. The application
shows a trivial GUI in which the user can specify an API endpoint and a username /
password combination.

To provide a more complex authentication scheme, the oidc_api authenticates requests
against its API via OAuth2.0. When the API receives an access token from a client, it
uses token introspection (defined by RFC7662) to validate the token and authenticate
the user [28]. The API needs an issuer, a client ID, and a client secret to validate the
given tokens.

builder.Services
.AddAuthentication("token")
.AddOAuth2Introspection("token", o =>
{

var section = builder.Configuration.GetSection("Oidc");
o.Authority = section.GetValue<string>("Issuer");
o.ClientId = section.GetValue<string>("ClientId");
o.ClientSecret = section.GetValue<string>("ClientSecret");
o.DiscoveryPolicy = new()
{

RequireHttps = false,
ValidateEndpoints = false,
ValidateIssuerName = false,
RequireKeySet = false,

};
});

The code above shows the configuration of the C# API application. It enables the API
to verify an incoming access token by using the introspection endpoint of the OIDC
provider. The introspection endpoint is defined in RFC7662 [28].

To complement the OIDC API, an oidc_app provides the means to access an OIDC
(OAuth2.0) protected API via an application. This Next.js application authenticates
users against the OIDC provider and then renders a simple page. Since this is a hosted

33

https://nextjs.org/

application, the HTTP(S)_PROXY variable is respected. The app calls the API and attaches
the access token in the HTTP Authorization header. The API validates the token and
returns the requested data or denies the request.

The final demo application is the oidc_provider. It is based on a Node.js package
that provides OIDC server capabilities. This identity provider allows any user with any
password and thus is not suitable for production environments. The provider supports
OAuth 2.0 Token Exchange (RFC8693) to enable the proxy applications to fetch an
access token for a specific user [29].

5.3 Implementing a Contract Repository

The (open-source) implementation of the contract repository resides in the GitHub
repository https://github.com/WirePact/k8s-contract-repository. The contract
repository consists of two parts: “API” and “GUI”. The separation of these parts is done
to enable the usage of the API without the user interface. The contract provider only
needs access to the API while an administrator could use the gRPC API or the graphical
interface to manage the contracts.

5.3.1 Provide a High-Performance API for Contracts

The API is a gRPC based application that provides the means to fetch, create, and
revoke contracts. The GUI is a web application that allows direct access to that API via
web browser.

In contrast to a git-based approach that is described in the previous sections, the local or
Kubernetes storage provides a deterministic approach to store the contracts. Further, it
improves the testability of the overall system. Using a git repository to store the contracts
would not improve the security nor the distribution of the system. However, the basic
concept of a git repository is used to distribute the contracts. The opposing part - the
contract provider - fetches the contracts from the repository at regular intervals. The
repository is not the single point of failure but could be targeted with a denial-of-service
attack.

The contracts do not contain any sensitive information. Therefore, the API does not
need to encrypt them in any way. The contracts can be stored in two ways: “Local” and
“Kubernetes”. While the local storage repository just uses the local file system to store
the serialized proto files, the “Kubernetes” storage adapter uses Kubernetes Secrets to
store the contracts.

34

https://github.com/WirePact/k8s-contract-repository

Figure 20: Use-cases for the Contract Repository

The use-cases shown in Figure 20 show the basic functionality of the contract repository.
Admins use the GUI or the gRPC API to create, fetch, and revoke contracts in the
system. Providers then use the gRPC API to fetch a list of all involved public certificates.
This allows the contract provider to create a certificate chain that contains all involved
parties and therefore allows mTLS connections to corresponding services.

Figure 21: Provider fetching relevant contracts from the repository

35

The application sequence in Figure 21 depicts the process when a provider fetches the
relevant list of contracts for itself. The provider calls the repository with its own public
certificate (which it fetches from its own PKI). The repository then returns a list of all
contracts that the provider is part of.

5.3.2 Administrate Contracts via Graphical Web Interface

The GUI application is based on the “Lit”11 framework. Lit was chosen because it uses
native web components to create applications instead of an engine like “React” and
“Angular”. Lit provides better performance and a smaller memory footprint than other
frameworks.

Web components are a mix between different technologies to create reusable custom
HTML elements. They consist of three main technologies (“Custom HTML Elements”,
“Shadow DOM”, and “HTML Templates”) to create reusable elements with encapsulated
functionality [30].

import { html, css, LitElement } from 'lit';
import { customElement, property } from 'lit/decorators.js';

@customElement('demo-element')
export class DemoElement extends LitElement {

static styles = css`
p {

color: pink;
}

`;

@property()
name = 'World';

render() {
return html`<p>Hello ${this.name}!</p>`;

}
}

The code above creates a custom “demo-element” that just prints “Hello World!” in
pink. Note that the CSS style is not interfering with any other styles. The CSS block is
encapsulated in this component only. To use the component above, one needs to include
the “demo-element” in their HTML code.

11https://lit.dev/

36

https://lit.dev/

<div>
<demo-element></demo-element>

</div>

The HTML above will render the demo element component inside the <div> and print
“Hello World!” in pink. If multiple of these components are rendered, each has its own
root DOM such that there is no interference between them.

The GUI application of the contract repository will allow administrators to create and
delete contracts in the repository. The GUI directly interacts with the repository via
gRPC-web calls. In contrast to gRPC, gRPC-web is a protocol that allows the usage of
gRPC in web applications. It allows HTTP/1.1 and HTTP/2 calls and requires the API
to understand gRPC-web or any form of translation layer between the two protocols.

37

5.4 Implementing a Contract Provider

The contract provider is an application that fetches the contracts from the repository
in a defined interval. The implementation can be found on the GitHub repository
https://github.com/WirePact/k8s-contract-provider.

Figure 22: Activity of the provider during each interval

During each interval, the provider executes the steps in Figure 22:

1. Connect to its own PKI.
2. Connect to the contract repository.
3. Check if the public key of the PKI is stored, if not, download and store it.
4. Check if a client certificate and key are stored, if not, create a key and fetch a

certificate from the PKI.
5. Fetch all public certificates that the “own PKI” is involved in and store the

certificates.

38

https://github.com/WirePact/k8s-contract-provider

The following code blocks describe the actions that the provider takes to achieve the
steps above.

debug!("Check PKI public certificate.");
if !storage.has_ca().await {

info!("Fetching PKI public certificate.");
let response = pki.get_ca(Request::new(())).await?.into_inner();
storage.store_ca(&response.certificate).await?;

}

The first step after connecting to the PKI and the contract repository is to check if the
configured storage location contains the public certificate of the “own” PKI. If not, the
provider fetches the public certificate from the PKI and stores it in the storage adapter.

debug!("Check private certificate.");
if !storage.has_certificate().await {

info!("Sign private certificate.");
let (key, csr) = create_csr(&config.common_name)?;
let response = pki

.sign_csr(Request::new(grpc::pki::SignCsrRequest {
csr: csr.to_pem()?,

}))
.await?
.into_inner();

storage
.store_certificate(

&response.certificate,
&key.private_key_to_pem_pkcs8()?,

)
.await?;

}

Next, the provider validates if a client certificate and key are present in the storage
adapter. This client certificate is required to enable the Envoy proxy to present it for
the mTLS connection to the distant service. If no certificate and/or key is found, the
provider creates a new key and a certificate signing request (CSR) and sends it to the
PKI. The PKI then signs the CSR and returns the signed certificate. The provider now
stores the certificate and the key in the storage adapter.

39

debug!("Fetch certificate chain.");
let (ca, ca_hash) = storage.get_ca().await?;
let response = repo

.get_certificates(Request::new(
grpc::contracts::GetCertificatesRequest {

participant_identifier: Some(
ParticipantIdentifier::Hash(ca_hash)

),
}

))
.await?
.into_inner();

let mut certificates = response.certificates;
certificates.push(ca);
storage.store_chain(&certificates).await?;
info!("Stored {} certificates in chain.", certificates.len());

The last step is to fetch all certificates that are involved in the contracts that the provider
is part of. The provider loads the public certificate of the “own” PKI and uses the hash
of the certificate to fetch all participants that share a contract with its own PKI. The
provider then attaches its own PKI root CA into the chain (since the API only returns
“other” certificates) and stores the chain in the storage adapter.

Like other applications in this project and the Distributed Authentication Mesh, the
provider is able to store the certificates in a local or Kubernetes storage adapter. The
main goal of the provider is to fetch all public keys of participating PKIs to enable mutual
TLS (mTLS) connections between participants.

Since there are multiple ways to inject additional trusted root certificates (all participant
PKIs), the provider does only store the certificate in the defined storage adapter. In
Kubernetes and its ingress controllers, the TLS context must be configured to use the
certificate, the key, and the trusted root certificates. The NGINX ingress controller must
know where the client certificate resides to connect to an internal service.

5.5 Create Secure Communication between Services

With the Distributed Authentication Mesh and the additional extensions of this project,
we are now able to create fully trusted communication between distant services. Even if the
applications are not running in the same trust context. The Distributed Authentication
Mesh provides the means to create a signed identity that can be used to authenticate a user
[1]. The common identity allows participating systems to restore required authorization
information for the targeted service [2].

The contract repository and provider now allow the PKIs to form a trust contract with
each other. This in turn allows services to establish mTLS connections with each other.

40

When participants of the mesh communicate with other services in distant trust contexts,
mTLS ensures that only allowed connections can be created. This mitigates the risk of
external services forging an identity and connecting to internal services. The secured
connection proofs that the PKIs are trusted and therefore no further encryption for the
common identity is required. The mTLS connection cannot be successfully created if the
service (respectively its PKI) is not involved in a contract with the destination.

Figure 23: The Contract Repository and the Trust Zones

Figure 23 shows how the parts interact with the contract repository. There are two
different trust zones, each of which contains its own “main” PKI. The PKI generates a
CA certificate root and creates client certificates for the services within the same trust
zone. An admin can create a trust contract between the two trust zones and store
the contract in the repository. Contract providers (for each service) can then fetch the
contracts and provide a client certificate and a certificate chain to validate incoming
client certificates.

41

5.6 A Trusted Distributed Authentication Mesh

One challenge with the Distributed Authentication Mesh is that the identity of a user
is sent to a specific target service. The destination then translates this identity into
valid authentication credentials [1]. This target service has no means to verify that the
sender is rightfully a part of the mesh itself [2]. Inside the same trust zone, the service
can trust the sender if it is not publicly exposed. But the use-case of the mesh includes
communication between different trust zones. Therefore, the service must be able to
verify that the sender is part of the mesh. With the contracts and the contract repository,
it is possible for all participants to download a list of contracts. The contracts include
the public certificates of all participating PKIs. Thus, it is possible for an application to
call an API in a distant trust zone and verify that the sender is part of the mesh.

To show and verify the statement, a demo application setup in Docker is provided in the
GitHub repository “https://github.com/WirePact/docker-demo”. This demo proofs that
it is possible to create a connection between two applications via mTLS connection.

The Docker demo consists of various containers that are required for the mesh. To verify
the setup and the system itself, this section provides a step-by-step analysis of the demo
and the functionality of the mesh in conjunction with the contract repository.

Figure 24: Trust Zone Alice

42

https://github.com/WirePact/docker-demo

Figure 24 shows the setup for the first trust zone, “Trust Zone Alice”. It consists of a
PKI, a contract provider, the application, an application proxy and the translator for
WirePact. The PKI creates its own root certificate authority (CA) and creates a client
certificate for the contract provider and the translator. The translator is responsible for
the extraction and translation of the WirePact common identity [2]. The proxy manages
all incoming and outgoing communication of the application itself. To enable general
access to the application, a public gateway allows incoming communication and passes it
to the application proxy.

Figure 25: Trust Zone Bob

The second trust zone, depicted in Figure 25, is similar. It contains the same elements
except for a public gateway since the demo system resides in Docker. A real-world
example would include another gateway that limits access to other containers in the
system.

43

Figure 26: Communication between Trust Zones

Without a contract, communication as shown in Figure 26 is not possible. The HTTPS /
mTLS connection between the two proxies cannot be established since they have different
root CAs. To enable communication between the parties, both proxies must know all
public certificates of the involved parties to allow verification of the certificates. When
the contract is created, the public certificates of both PKIs are inserted and then stored
in the contract repository. Both contract providers will fetch the contract and deliver
the full certificate chain to their respective proxies. The proxies can now verify the
certificates and establish a connection.

Figure 27: mTLS Connection between Proxies

To proof that the connection is secured via mTLS, the network traffic of the demo Docker

44

setup was recorded12. Figure 27 shows the TLS handshake between the two proxies. All
other communication is HTTP, while the communication between the proxies is HTTPS.
We can see that the server does present its own certificate accompanied by the certificate
request for the client. The client in turn does present its own certificate and then the
connection is established.

12With “termshark”, a terminal only alternative to Wireshark (https://github.com/gcla/termshark)

45

https://github.com/gcla/termshark

6 Conclusions and Outlook

In this thesis, the author presented a solution to truly distribute the authentication mesh
over distant clusters, environments, and trust zones. The Distributed Authentication
Mesh in conjunction with the common identity was not able to run safely across trust
zones [1], [2]. Inside the same trust zone, the mesh did provide its functionality. Although,
as soon as the communication spans multiple clusters with their own gateways, the trust
between the participants of the mesh could not be guaranteed. There was no mechanism
in place to verify the sender of a common identity. The goals of this work were to
analyze the current state of the mesh and provide a solution to distribute the Distributed
Authentication Mesh over multiple trust zones. Ultimately creating a “Distributed
Authentication Mesh”.

This thesis analyzes the issue and gives a detailed solution for the problem. The solution
is based on the idea of a trust contract between the public key infrastructures (PKIs)
of the mesh. Each PKI creates its own root certificate authority (CA) which is used
by the services inside the same trust zone to communicate with each other. To allow
communication between distant trust zones, the services must know the public certificates
of the distant PKI to validate the provided client certificate. When such a contract is
created, the contract provider fetches the public certificates involved and provides the
certificate chain as a file. With that, the application proxies can enforce a client certificate
and can validate it against the provided certificate chain. This allows the Distributed
Authentication Mesh to span multiple trust zones and to be truly distributed.

Figure 28: Multiple Trust Zones in a Distributed Authentication Mesh

This thesis contributes to the concept of the Distributed Authentication Mesh. It extends
the already defined components with a contract repository and allows the mesh to be
distributed over multiple trust zones, as Figure 28 shows. With the additional concept
of the contracts, the mesh participants can now safely communicate with distant (with
mTLS encryption) parties and trust the provided identity. When a participant’s proxy

46

receives an HTTP request and the mTLS connection has been established, the proxy can
be sure that the source of the request is a genuine part of the authentication mesh.

The basic question that the Distributed Authentication Mesh answered was: “Is it
possible to authenticate a user, if the communicating services do not share the same
authentication mechanisms”. Past work proved that it was indeed possible. The concepts
of the authentication mesh allowed for a dynamic conversion of authentication credentials
(e.g., access tokens or username/password combinations) into a “common identity” and
vice versa [1], [2]. However, the Distributed Authentication Mesh was not able to span
multiple trust zones. Today, many real-world situations require the communication of
services across multiple trust zones and/or clusters. The addition of trust contracts, the
respective repository, and the contract providers to the concept of the mesh allows it to
finally span across multiple trust zones as shown in Figure 28.

All created implementations and software repositories are available as open-source under
the Apache 2.0 license. The source code can be found on GitHub under the organization
“WirePact” (https://github.com/WirePact). To run a working demo setup of the full
Distributed Authentication Mesh, the reader can follow the instructions in the README
of the “docker-demo” repository (https://github.com/WirePact/docker-demo).

Future work may include the purposed work of past work like the addition of a rule
engine into the concept of the Distributed Authentication Mesh. These rules could be
incorporated into the contracts that are purposed in this thesis. Such a rule engine
could, as an example, allow time-based access to services inside a trust zone and block
communication when the rules do not apply. Also, with this project, the Distributed
Authentication Mesh has become truly distributed and can communicate across trust
zone boundaries. However, the contract repository itself is not yet distributed. Future
work can include the distribution of the contract repository with the distribution of the
contract database itself.

47

https://github.com/WirePact
https://github.com/WirePact/docker-demo

Bibliography
[1] C. Bühler, “Distributed Authentication Mesh - A Concept for Declarative Ad Hoc

Conversion of Credentials,” Eastern Switzerland University of Applied Science
(OST), Aug. 2021. Available: https://buehler.github.io/mse-project-thesis-
1/report.pdf

[2] C. Bühler, “Common Identities in a Distributed Authentication Mesh - Defin-
ition and Implementation of a Common Identity for Secure Transport,” East-
ern Switzerland University of Applied Science (OST), Feb. 2022. Available:
https://buehler.github.io/mse-project-thesis-2/report.pdf

[3] B. Burns, J. Beda, and K. Hightower, Kubernetes, Second Edition. Dpunkt
Heidelberg, Germany, 2018.

[4] B. Beyer, C. Jones, J. Petoff, and N. R. Murphy, Site reliability engineering: How
google runs production systems. " O’Reilly Media, Inc.", 2016.

[5] J. Dobies and J. Wood, Kubernetes operators: Automating the container orches-
tration platform. O’Reilly Media, 2020.

[6] B. Burns and D. Oppenheimer, “Design patterns for container-based distributed
systems,” in 8th USENIX workshop on hot topics in cloud computing (HotCloud 16),
Jun. 2016. Available: https://www.usenix.org/conference/hotcloud16/workshop-
program/presentation/burns

[7] S. Samonas and D. Coss, “The CIA strikes back: Redefining confidentiality,
integrity and availability in security.” Journal of Information System Security, vol.
10, 2014.

[8] A. Mallik, “Man-in-the-middle-attack: Understanding in simple words,” Cyber-
space: Jurnal Pendidikan Teknologi Informasi, vol. 2, no. 2, pp. 109–134, 2019,
doi: http://dx.doi.org/10.22373/cj.v2i2.3453.

[9] I. Ahmed, T. Nahar, S. S. Urmi, and K. A. Taher, “Protection of sensitive data in
zero trust model,” in Proceedings of the international conference on computing
advancements, 2020. doi: 10.1145/3377049.3377114.

[10] S. Rose, O. Borchert, S. Mitchell, and S. Connelly, “Zero trust architecture,”
National Institute of Standards; Technology, 2019.

[11] J. Reschke, “The ’Basic’ HTTP authentication scheme,” Internet Engineering
Task Force IETF, RFC, Sep. 2015. doi: 10.17487/RFC7617.

[12] D. Hardt et al., “The OAuth 2.0 authorization framework,” Internet Engineering
Task Force IETF, RFC, Oct. 2012. doi: 10.17487/RFC6749.

[13] N. Sakimura, J. Bradley, M. Jones, B. De Medeiros, and C. Mortimore, “Openid
connect core 1.0,” The OpenID Foundation OIDF, Spec, 2014. Available: https:
//openid.net/specs/openid-connect-core-1_0.html

[14] P. Siriwardena, “Mutual authentication with TLS,” in Advanced API security:
Securing APIs with OAuth 2.0, OpenID connect, JWS, and JWE, Berkeley, CA:
Apress, 2014, pp. 47–58. doi: 10.1007/978-1-4302-6817-8_4.

48

https://buehler.github.io/mse-project-thesis-1/report.pdf
https://buehler.github.io/mse-project-thesis-1/report.pdf
https://buehler.github.io/mse-project-thesis-2/report.pdf
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/burns
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/burns
http://dx.doi.org/10.22373/cj.v2i2.3453
https://doi.org/10.1145/3377049.3377114
https://doi.org/10.17487/RFC7617
https://doi.org/10.17487/RFC6749
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://doi.org/10.1007/978-1-4302-6817-8_4

[15] T. Dierks and E. Rescorla, “The transport layer security (TLS) protocol version
1.2,” Internet Engineering Task Force IETF, RFC, Aug. 2008. Available: https:
//tools.ietf.org/html/rfc5246

[16] N. Naik and P. Jenkins, “Securing digital identities in the cloud by selecting an
apposite federated identity management from SAML, OAuth and OpenID connect,”
in 2017 11th international conference on research challenges in information science
(RCIS), 2017, pp. 163–174. doi: 10.1109/RCIS.2017.7956534.

[17] M. Nofer, P. Gomber, O. Hinz, and D. Schiereck, “Blockchain,” Business &
Information Systems Engineering, vol. 59, no. 3, pp. 183–187, 2017.

[18] M. Jakobsson, T. Leighton, S. Micali, and M. Szydlo, “Fractal merkle tree rep-
resentation and traversal,” in Topics in cryptology — CT-RSA 2003, 2003, pp.
314–326.

[19] Z. Zheng et al., “An overview on smart contracts: Challenges, advances and
platforms,” Future Generation Computer Systems, vol. 105, pp. 475–491, 2020,
doi: https://doi.org/10.1016/j.future.2019.12.019.

[20] C.-G. Koa, S.-H. Heng, and J.-J. Chin, “ETHERST: Ethereum-based public key
infrastructure identity management with a reward-and-punishment mechanism,”
Symmetry, vol. 13, no. 9, 2021, doi: 10.3390/sym13091640.

[21] I.-C. Lin and T.-C. Liao, “A survey of blockchain security issues and challenges.”
International Journal of Network Security, vol. 19, no. 5, pp. 653–659, 2017, doi:
10.6633/IJNS.

[22] W. Li, S. Andreina, J.-M. Bohli, and G. Karame, “Securing proof-of-stake
blockchain protocols,” in Data privacy management, cryptocurrencies and
blockchain technology, 2017, pp. 297–315.

[23] D. Spinellis, “Git,” IEEE Software, vol. 29, no. 3, pp. 100–101, 2012, doi:
10.1109/MS.2012.61.

[24] S. Klabnik and C. Nichols, The rust programming language (covers rust 2018).
No Starch Press, 2019.

[25] N. Ivanov, “Is rust c++-fast? Benchmarking system languages on everyday
routines,” 2022, doi: 10.48550/ARXIV.2209.09127.

[26] R. Jung, J.-H. Jourdan, R. Krebbers, and D. Dreyer, “RustBelt: Securing the
foundations of the rust programming language,” Proc. ACM Program. Lang., vol.
2, no. POPL, Dec. 2017, doi: 10.1145/3158154.

[27] R. Jung, J.-H. Jourdan, R. Krebbers, and D. Dreyer, “Safe systems programming
in rust,” Communications of the ACM, vol. 64, no. 4, pp. 144–152, 2021.

[28] J. Richer, “OAuth 2.0 Token Introspection,” Internet Engineering Task Force
IETF, RFC, Oct. 2015. doi: 10.17487/RFC7662.

49

https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://doi.org/10.1109/RCIS.2017.7956534
https://doi.org/10.1016/j.future.2019.12.019
https://doi.org/10.3390/sym13091640
https://doi.org/10.6633/IJNS
https://doi.org/10.1109/MS.2012.61
https://doi.org/10.48550/ARXIV.2209.09127
https://doi.org/10.1145/3158154
https://doi.org/10.17487/RFC7662

[29] M. Jones, A. Nadalin, B. Campbell, J. Bradley, and C. Mortimore, “OAuth 2.0
Token Exchange,” Internet Engineering Task Force IETF, RFC, Jan. 2020. doi:
10.17487/RFC8693.

[30] MDN Contributors, “Web Components.” Mozilla Foundation, Aug. 2022. Available:
https://developer.mozilla.org/en-US/docs/Web/Web_Components

50

https://doi.org/10.17487/RFC8693
https://developer.mozilla.org/en-US/docs/Web/Web_Components

	Declaration of Authorship
	Introduction
	Definitions and Clarification of the Scope
	Scope of this Project
	Introduction into Kubernetes
	Basic Terminology
	What is an Operator
	What is a Sidecar

	Introduction into Security, Trust Zones, and Secure Communication
	The CIA Triad
	Trust Zones and Zero Trust
	Securing Communication between Parties

	Introduction into the Distributed Authentication Mesh
	Accessing Legacy Software with Cloud-Native Applications
	The Contrast to Security Assertion Markup Language
	The Concept of Distributed Authentication

	The State of Distributed Authentication
	The Distributed Authentication Mesh in a Single Trust Zone
	Multiple Trust Zones and Distribution
	Contracts for Distribution

	Creating a Trust Context for the Authentication Mesh
	Additional Requirements
	Sign and Distribute Contracts between Participants
	Using a Blockchain
	Using a Master Node
	Using a Git Repository

	Define the Contract

	Implementing the Contract Repository
	The Rust Programming Language
	Demo Applications
	Implementing a Contract Repository
	Provide a High-Performance API for Contracts
	Administrate Contracts via Graphical Web Interface

	Implementing a Contract Provider
	Create Secure Communication between Services
	A Trusted Distributed Authentication Mesh

	Conclusions and Outlook
	Bibliography

