Exercise 1 - Getting started with Kafka

The demo implementation (and further down the line all other implementation) has been done in a GitHub
repository: https://github.com/buehler/mcs-event-driven-systems/.

Inside the./demo directory, there is a small demo of Kafka using Docker Compose and dotnet. The consumer
and producer are implemented in C# using the Confluent.Kafka library. The producer sends one message
each second with the unix timestamp and the topic is called clock. To run the application, go into the
./demo directory and run docker compose up. It includes and configures Kafka from the root directory and
also fires up the producer and consumer (and builds them first if necessary). If any changes are made to the
code of the producer and/or consumer, you’ll need to rebuild the docker files using docker compose build.

Task 2 - Experiments with Kafka

All code for the experiments regarding exercise 2 are exclusively under /exercisel

This means all commands shown below must be run from the corresponding path. ### Basic setup Set the
correct KAFKA ADVERTISED HOST_NAME in docker-compose.yml (exercisel/docker/)

1. Producer Experiments
Start docker with the producer profile (run from /experimentsl/docker)
$ docker compose --profile producer up -d

There are many two classes for different testing purposes. We did not change the pom file all the time. The
poms therefore contain the following as a reminder:

<manifest>
<mainClass>read_EDPO_T1_E1.md</mainClass>
</manifest>

To run the services the correct main class must be stated in the command. #### Batch Size & Processing
Latency

Uses this main class for this test: ProducerExperimentBatchSizeClicksProducer.java
Note: Must be run from the exercisel /producerTests/target subfolder.

$ java -cp pubsub-producer-1.0-SNAPSHOT-jar-with-dependencies.jar com.experiments.ProducerExperimentBa

Experiment Setup

o Batch Sizes tested:

1024 bytes

— 4096 bytes

16384 bytes

65536 bytes

— 262144 bytes

1048576 bytes

e Total Messages: Each batch size sends 50,000 messages.

o Kafka Producer Settings:
— linger.ms = 5: Ensures a consistent delay before sending messages.
— buffer.memory = 32MB: Default Kafka buffer memory.

Metrics Measured

e Duration (ms): Total time taken to send all messages.
o Throughput (msgs/sec): The number of messages sent per second.
o Average Latency (ms): The average time it takes for a message to be sent and acknowledged by Kafka.

../../exercise1/docker/docker-compose.yml
../../exercise1/producerTests/src/main/java/com/experiments/ProducerExperimentBatchSizeClicksProducer.java

Experiment Results

Batch Size Messages Duration (ms) Throughput Avg Latency (ms)
1024 50000 1320 37878.79 607.96

4096 50000 559 89445.44 57.59

16384 50000 421 118764.85 6.94

65536 50000 354 141242.94 3.94

262144 50000 411 121654.50 8.18

1048576 50000 365 136986.30 18.46

Observations Throughput: - Throughput increases significantly as the batch.size grows. - Larger batch
sizes reduce the overhead of network communication by allowing more messages to be sent in a single request,
thus improving efficiency. - Maximum throughput is achieved at a batch size of 65536, with 141242.94
messages/sec.

Latency Trade-off: - Average latency per message decreases and becomes negligible at batch sizes up to 65536.
- However, at larger batch sizes (e.g., 262144 and 1048576), the average latency increases again to 8.18 ms
and 18.46 ms respectively. This is due to the delays introduced by waiting to fill larger batches, despite the
gains in throughput.

Key Insights for our project Small Batch Sizes: - When the batch.size is too small (e.g., 1024), both
throughput and latency suffer due to frequent network communication and higher per-message overhead. —>
We don’t want that.

Medium Batch Sizes: - Moderate batch sizes (e.g., 16384 - 65536) are balanced between throughput and
latency. —> Seems suitable for us.

Large Batch Sizes: - While large batch sizes (e.g., 262144 or 1048576) deliver very high throughput, they
slightly compromise latency. —> We prefer immediate message delivery. —

Load Testing Uses this main class for this test: ProducerExperimentLoadTestClicksProducer.java
Note: Must be run from the exercisel /producerTests/target subfolder.

$ java -cp pubsub-producer-1.0-SNAPSHOT-jar-with-dependencies.jar com.experiments.ProducerExperimentLo:

Experiment Setup

o Base producer properties are loaded from a producer.properties configuration file.
e A fixed batch size of 16384 is used for each experiment.
e Up to 5 concurrent producers are tested.
o Total messages to send per experiment: 8,000,000.
e acks:1
e retries:0
o Kafka Topic Setup:
— Single partition and replication factor of one for all topics.
e Experiment Iteration:
— For each producer count (1 to 5):
* Producers execute message sending concurrently.
* Each producer sends its share of the total messages.
* Experiment duration, throughput, latency, and resource usage are measured and recorded.

Metrics Measured See table.

../../exercise1/producerTests/src/main/java/com/experiments/ProducerExperimentLoadTestClicksProducer.java

Experiment Results

Avg Avg Avg

Batch Messages Duration Throughput Latency Message Dropped CPU Memory
Size ProducerSent (ms) (msg/sec) (ms) Drop (%) (%) (MB)
16384 1 7900776 6075 1300512.76 30.39 99385 1.24 63.79 2281.52
16384 2 7704802 4484 1718287.69 177.64 295198 3.69 89.91 2224.71
16384 3 7249508 4797 1511258.70 422.96 750490 9.38 51.77 2534.69
16384 4 6914848 4377 1579814.48 492.23 1085152 13.56 37.50 1354.18
16384 5 6622923 4202 1576135.89 601.33 1377077 17.21 64.35 1871.41

Observations Throughput: - Maximum throughput was achieved with 2 producers, reaching 1,718,287.69
messages/sec. - Increasing the number of producers beyond 2 caused slight inconsistencies in throughput
performance.

Latency: - As the number of producers increased, average latency per message increased significantly. - Lowest
latency observed with 1 producer: 30.39 ms. - Highest latency observed with 5 producers: 601.33 ms.

Message Drops: - Message drop rate (%) increased as the number of producers increased: - 1 producer: 1.24%
dropped messages. - 5 producers: 17.21% dropped messages.

Resource Usage: - CPU Usage: CPU usage peaked at 89.91% with 2 producers, but fluctuated under heavier
producer loads. - Memory Usage: Memory usage varied between 1354.18 MB and 2534.69 MB, with no clear
linear trend observed across producer counts.

Key Insights for our project

e The number of high volume producer must match the number of brokers. If there are to many producers,
the broker can get overwhelmed which results in message drop.

1. Consumer Experiments
Start docker with the producer profile
$ docker compose --profile producer up -d

To run the services the correct main class must be stated in the command. #### Consumer Lag & Data
Loss Risks

Note: Must be run from the /exercisel/consumerTests/target subfolder.

$ java -jar target/pubsub-consumer-1.0-SNAPSHOT-jar-with-dependencies. jar

Experiment Setup

o Kafka Consumer-Producer Configuration:
— Topic: click-events with a single partition.
— Producer: Sends messages at different rates: 500, 1000, and 1500 messages/second.
— Consumer: Simulates processing delays at intervals of 0 ms, 200 ms, 400 ms, and 600 ms.
— Producer and Consumer run concurrently for a fixed test duration of 5 seconds.

e Testing Process:
1. Delete all existing topics to start fresh for each experiment.

Create a new topic and verify its readiness.

Configure the producer to send messages at different rates.

Measure consumer performance under various processing delays.

Compute and aggregate metrics for each producer rate and delay combination.

G

o Duration:
— Each test combination (rate x delay) runs for 5000 ms (5 seconds).

Metrics Measured See table.

Experiment Results

Messages/Sec Processing Delay (ms) Messages Processed Avg Lag Cumulative Lag
500 0 1934 0 1768

500 200 1836 0 1622

500 400 1834 0 1830

500 600 1968 1 2435
1000 0 4178 1 7167
1000 200 3671 1 5895
1000 400 3586 1 6587
1000 600 2000 4 9223
1500 0 204880 90 18590332
1500 200 163781 136 22301112
1500 400 48947 365 17906927
1500 600 2000 694 1389148
Observations

o Messages Processed:
— At lower producer rates (500 msg/s), the consumer successfully handled most messages, even under
higher processing delays.
— At higher producer rates (1500 msg/s), the number of messages processed drastically reduced,
especially with delays of 400 ms and 600 ms.
o Lag Behavior:
— Average lag remains low for smaller producer rates (500, 1000 msg/s) but increases significantly at
1500 msg/s, especially under higher delays.
— Cumulative lag dramatically spikes at 1500 msg/s with significant delays (e.g., 22301112 cumulative
lag with 200 ms delay).
o Impact of Processing Delay:
— At 500 msg/s and 1000 msg/s, delays up to 400 ms show minimal impact on lag and messages
processed.
— At 1500 msg/s, processing delays (400 ms and 600 ms) cause severe drops in messages processed
and high lag values.

Key Insights for our project For our application, we have to keep in mind, that the production rate and
consumption delay have to be balanced to guarantee stable balance between high throughput and low lag.

High producer rates, coupled with significant processing delays, overload the consumer. This indicates the
need for tuning Kafka consumer properties or introducing additional partitions and consumers to handle
higher workloads.

Therefore we conclude: - Scale horizontally by increasing the number of partitions and adding parallel
consumers if higher producer rates or longer processing delays are necessary. - Optimize the consumer
processing logic to reduce processing time per message, further minimizing the downstream lag.

3. Fault Tolerance & Reliability

Broker Failures & Leader Elections Start docker with the fault profile
$ docker compose --profile fault up -d

Run test from

../faultToleranceTest

$ mvn test -Dtest=com.experiments.KafkaFailoverDockerTest

Experiment Setup This experiment was conducted to observe the behavior of a Kafka cluster during a
broker failover scenario. The setup consisted of a Kafka cluster with three brokers, and a topic configured
with three partitions and a replication factor of three. The test involved managing graceful and ungraceful
shutdowns, monitoring leader elections, and assessing the cluster’s recovery performance. Key aspects of the
setup include the following:

o Test Topic: test-replication-topic

e Producers: Three concurrent producer threads sending messages to the topic.

¢ Consumers: One consumer thread consuming messages from the topic.

e Failure Simulation: The Docker container kafkal was stopped to simulate broker failure, and later
restarted for recovery.

Producer Settings (selection)

e acks: all

e retries: 3

e retry.backoff.ms: 500

e request.timeout.ms: 15000

e metadata.max.age.ms: 1000

e linger.ms: 5

e max.in.flight.requests.per.connection: 5
e delivery.timeout.ms: 30000

e reconnect.backoff.ms: 500

e reconnect.backoff.max.ms: 10000

Consumer Settings (selection)

e auto.offset.reset: latest

e enable.auto.commit: false

e max.poll.interval.ms: 60000
e fetch.max.wait.ms: 500

e max.poll.records: 500

e session.timeout.ms: 10000

e heartbeat.interval.ms: 1000
e request.timeout.ms: 40000

e fetch.min.bytes: 1

e reconnect.backoff.ms: 1000
e reconnect.backoff.max.ms: 10000

Metrics Measured

o Broker Kill Time (ms): Time taken to simulate a broker failure.

o Leader Election Time (ms): Time taken for the Kafka cluster to elect new leaders for the partitions
previously managed by the failed broker.

o Broker Restart Time (ms): Time taken to restart the stopped broker and rejoin the cluster.

Consumer Lag (Messages): The difference between the total number of messages produced and consumed
throughout the duration of the experiment.

Producer Recovery Time (ms): Time taken by producers to return to normal operation after the broker
restarts.

Consumer Recovery Time (ms): Time taken by consumers to start receiving messages after the broker
is restarted.

Total Produced Messages: Total number of messages produced during the experiment.

Total Consumed Messages: Total number of messages consumed during the experiment.

Partitions Revoked and Assigned: The number of partition reassignment events observed during the
consumer’s rebalancing process.

Experiment Results The experiment results are summarized in the following table:

Metric Value

Test Name Kafka Broker Failover Test
Topic Name test-replication-topic
Broker Kill Time (ms) 10

Leader Election Time (ms) 26

Broker Restart Time (ms) 3294

Consumer Lag (Messages) 719

Producer Recovery Time (ms) 33329
Consumer Recovery Time (ms) 33329

Total Produced Messages 13574
Total Consumed Messages 12855
Test Successful true

Last Produced Before Failure 2025-03-02 18:10:31.305
First Produced After Recovery 2025-03-02 18:11:04.634
Last Consumed Before Failure 2025-03-02 18:10:31.312
First Consumed After Recovery 2025-03-02 18:11:04.641
Revoked Partitions Count 3
Assigned Partitions Count 3

Observations

1.

During the broker failover, all partitions transitioned to new leaders. The new leaders chosen for the
partitions were as follows:

Partition 0: New leader = 2
Partition 1: New leader = 2
Partition 2: New leader = 3

. The Kafka producers and consumer did not resume operation until the broker (kafkal) was restarted.

Following the successful restart of the broker:

The first message production after recovery was captured at 2025-03-02 18:11:04.634.
The first message consumption after recovery was captured at 2025-03-02 18:11:04.641.

. Several disconnection and connection failure warnings were logged by the producers and consumers

while attempting to reconnect to the unavailable broker (kafkal). Examples include:

Connection to node 1 (/192.168.1.173:9092) could not be established. Node may not be
available.

Multiple failures were observed across the producer threads (producer-1, producer-2, producer-3)
and the consumer thread.

4. The cluster resumed normal operations only after kafkal was successfully restarted, with new leaders
continuing to manage partitions. This behavior indicates that while brokers transitioned leadership
effectively, the client applications (producers, consumers) required the restarted broker to continue their
workflows.

5. Successfully restarting kafkal reintroduced it to the cluster:

¢ Restart logs showed that the broker was started successfully.
o The broker was able to fully recover and rejoin the cluster.

Key Insights for our project This behavior emphasizes that while the Kafka cluster ensures no data loss
and maintains partition leadership upon broker failover, the client applications (producers and consumers)
must handle the detection of broker failures and react accordingly, if waiting for the broker is no option.

	Exercise 1 - Getting started with Kafka
	Task 2 - Experiments with Kafka
	1. Producer Experiments
	1. Consumer Experiments
	3. Fault Tolerance & Reliability

